期刊文献+

基于操作时间和广义线性混合模型的准备金评估技术研究 被引量:6

Research on Claims Reserving Based on Operational Time and Generalized Linear Mixed Models
原文传递
导出
摘要 基于操作时间来重新设计流量三角形,通过对Hoerl曲线进行推广来刻画异质的损失进展模式,分别建立双广义线性混合模型和Tweedie分布簇广义线性混合模型来评估准备金。该模型可以综合信息平台汇总数据,同时利用个体经验数据和行业数据来评估任何保险公司在任何时点的准备金,解决传统准备金评估技术的弊端,为动态风险监管提供决策依据。在实证分析中,根据重疾险的数据特征,设计适合的准备金评估模型,最后进行对比分析,总结模型方法的优点、缺点和主要结论。 This article used operational time to redesign the runoff triangle, and constructed double generalized lin ear mixed models and Tweedie-based generalized linear mixed models by way of improving Horel curve to describe heterogenerious claim developments factors. While these models can integrate all-round statistics on the information platform, they can evaluate claims reserves at any time for any insurers based on their individual experiences and in- dustry data. Thus, they can address the deficiency of traditional reserve evaluation techniques, and can provide with decision-making references for dynamic risk management. In the exponential analysis, we constructed a claims reser ving model for short-term critical illness insurance, made a comparative analysis of the results, and summarized the strengths and weakness of the models and our main conclusions.
作者 谢远涛 杨娟
出处 《保险研究》 CSSCI 北大核心 2014年第3期54-62,共9页 Insurance Studies
基金 国家自科基金项目"风险信息共享背景下的个体风险评估研究"(No.71303045)成果
关键词 操作时间 过度离散 广义线性混合模型 零截断广义泊松分布 Tweedie operational time over-dispersion generalized linear mixed models ZIGP(S) Tweedie
  • 相关文献

参考文献37

  • 1孟生旺.未决赔款准备金评估模型的比较研究[J].统计与信息论坛,2007,22(5):5-9. 被引量:7
  • 2Panning, W. H.. Measuring Loss Reserve Uncertainty [ J ]. CAS Forum, Fall 2006:237 - 267.
  • 3Nelder, J. A. and Wedderburn, R. W. M.. Generalized Linear Models [ J ]. Journal of the Royal Statistical So-ciety, Ser. A, 1972,135:370 - 384.
  • 4McCullagh, P. , Nelder, J. A.. Generalized Linear Models ( 2nd edtion) [ M ]. Chapman & Hall, New York, 1989:6 -71.
  • 5Liang, K. Y. and Zeger, S. L. Longitudinal Data Analysis Using Generalized Linear Models [ J ]. Biometrika, 1986,73 : 13 - 22.
  • 6Williams, D. A. Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions[ J]. Ap- plied Statistics, 1987,36 : 181 - 191.
  • 7Lipsitz, S. H. , Laird, N. M. , and Harrington, D. P.. Generalized Estimating Equations for Correlated Binary Data : Using the Odds Ratio as a Measure of Association [ J ]. Biometrika, 1991,78 : 153 - 160.
  • 8Haberman, S. and Renshaw, A. E.. Generalized Linear Models and Acturial Science [ J ]. Journal of the Royal Statistical Society, Series D, 1996,45 (4) :407 - 436.
  • 9Renshaw, A. E.. Chain Ladder and Interactive Modelling [ J ]. Journal of Institute of Actuaries, 1989,116 : 559 - 587.
  • 10Christofides. Claims Reserving Manual, Vol. 3. Faculty and Institute of Actuaries [ M ]. Second Edition. Lon- don, 1997.

二级参考文献142

  • 1刘乐平,袁卫.现代贝叶斯分析与现代统计推断[J].经济理论与经济管理,2004,24(6):64-69. 被引量:49
  • 2毛泽春,吕立新.用双广义线性模型预测非寿险未决赔款准备金[J].统计研究,2005,22(8):52-55. 被引量:12
  • 3刘乐平,袁卫,张琅.保险公司未决赔款准备金的稳健贝叶斯估计[J].数量经济技术经济研究,2006,23(7):82-89. 被引量:8
  • 4勒梅尔.汽车保险费的定价原理[M].袁卫译,经济科学出版社,1997.
  • 5Ridout M, Demetrio C G B, Hinde J. Models for count data with many zeros[C]. Invited paper presented at the Nineteenth International Biometrie Conference, Cape Town, South Africa, 1998. 179-190.
  • 6Yip K, Yau K. On modeling claim frequency data in general insurance with extra zeros [J]. Insurance: Mathematics and Economics, 2005036 (2) : 153-163.
  • 7Frome E L, Kurtner M H, Beauchamp J J. Regression analysis of poisson-distributed data[J]. Journal of the American Statistical Association, 1973,68(345) : 288-298.
  • 8Lamber D. Zero-inflated Poisson regression with an application to defects in manufacturing[J]. Technometrics, 1992,34(1) :1-14.
  • 9陈希孺.数理统计引论[M].北京:科学出版社,1990.
  • 10Akaike H. Information theory and an extension of the maximum likelihood principle[J]. Proceedings of the 2nd International Symposium on Information Theory, Akademiai Kiade, Budapest, 1973. 267-281.

共引文献71

同被引文献144

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部