期刊文献+

基于量子修正的石墨烯纳米带热导率分子动力学表征方法 被引量:8

Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction
原文传递
导出
摘要 本文提出了基于量子修正的非平衡态分子动力学模型,可用于石墨烯纳米带热导率的表征.利用该模型对不同温度下,不同手性及宽度的石墨烯纳米带热导率进行了研究,结果发现:相较于经典分子动力学模型给出的热导率随温度升高而单调下降的结论,在低于Debye温度的情况下,量子修正模型的计算结果出现了反常现象.本文研究还发现,石墨烯纳米带的热导率呈现出明显的边缘效应及尺度效应:锯齿型石墨烯纳米带的热导率明显高于扶手椅型石墨烯纳米带;全温段的热导率及热导率在低温段随温度变化的斜率均随宽度的增加而增大.最后,文章用Boltzmann声子散射理论对低温段的温度效应及尺度效应进行了阐释,其理论分析结果说明文章所建模型适合在全温段范围内对不同宽度和不同手性的热导率进行精确计算,可为石墨烯纳米带在传热散热领域的应用提供理论计算和分析依据. A nonequilibrium molecular dynamics model combined with quantum correction is presented for characterizing the thermal conductivity of graphene nanoribbons (GNR). Temperature effect on graphene nanoribbon thermal conductivity is revealed based on this model. It is shown that different from the decreasing dependence in classical nonequilibrinm molecular dynamics simulations , an "anomaly" is revealed at low temperatures using quantum correction. Besides, the conductivity of GNR shows obvious edge and scale effects: The zigzag GNR have higher thermal conductivity than the zigzag GNR. The whole temperature range of thermal conductivity and the slope of thermal conductivity at low temperatures both show an increasing dependence of width. Boltzmann-Peierls phonon transport equation is used to explain the temperature and scale effects at low temperatures, indicating that the model constructed is suitable for a wide temperature range of accurate calculation for thermal conductivity of different chirality and width, Research provides a possible theoretical and computational basis for heat transfer and dissipation applications of GNR.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期270-276,共7页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB934103)资助的课题~~
关键词 石墨烯纳米带 热导率 量子修正 分子动力学模拟 graphene nanoribbons, thermal conductivity, quantum correction, nonequilibrium moleculardynamics simulation
  • 相关文献

参考文献3

二级参考文献69

  • 1倪向贵,殷建伟.拉伸条件下双壁碳纳米管弹性性能的原子模拟[J].物理学报,2006,55(12):6522-6525. 被引量:3
  • 2田建辉,韩旭,刘桂荣,龙述尧,秦金旗.SiC纳米杆的驰豫性能研究[J].物理学报,2007,56(2):643-648. 被引量:7
  • 3袁剑辉,程玉民.单壁碳纳米管杨氏模量的掺杂效应[J].物理学报,2007,56(8):4810-4816. 被引量:8
  • 4Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5296):666-669.
  • 5Zhou J,Huang R.Internal lattice relaxation of single-layer graphene under in-plane deformation[J].Journal of the Mechanics and Physics of Solids,2008,56(4):1609-1623.
  • 6Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
  • 7Zhang Y B,Tan Y W,Strormer H L,et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].Nature,2005,438(7065):201-204.
  • 8Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
  • 9Klemens P G.Theory of the a-plane thermal conductivity of graphite[J].Journal of Wide Bandgap Materials,2000,7(4):332-339.
  • 10Balandin A A,Ghosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.

共引文献63

同被引文献53

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部