摘要
研究了一个特殊的三维混沌系统的动力学行为.通过计算非双曲平衡点处的第一和第二Lyapunov系数,讨论系统发生Hopf分岔和退化Hopf分岔时极限环的稳定性,揭示两种不同类型的吸引子共存的产生机制.
The dynamical behavior of a special 3D chaotic system is studied .Hopf bifurcation and degen-erate Hopf bifurcation are discussed by computing the first and second Lyapunov coefficients associated to a nonhyperbolic equilibruim ,which gives an analytical proof of the mechanism for the birth of two different types of attractors .
出处
《湖北民族学院学报(自然科学版)》
CAS
2014年第1期75-77,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
贵州省科技厅自然科学基金项目([2013]2144)