期刊文献+

一种基于特征演变的新闻话题演化挖掘方法 被引量:24

A Topic Evolution Mining Algorithm of News Text Based on Feature Evolving
在线阅读 下载PDF
导出
摘要 话题演化挖掘研究可以准确完整地获取新闻话题动态演化各个阶段的话题内容,帮助用户理解新闻话题的来龙去脉以及话题内容之间的相关性和差异性,因此在网络新闻检索、网络舆情监控、互联网突发事件检测与应急管理等方面具有十分重要的作用和应用前景.现有工作由于缺乏对话题特征随时间发展而动态演变的深入分析,仅仅采用均值泛化的思想去增量扩充演化中的话题特征,引入大量话题无关信息,影响了话题关联的准确率,从而导致最终话题演化挖掘结果的偏斜.因此,针对以上问题,文中通过引入话题特征演变特性,提出一种针对话题演化的特征计算模型,在此基础上利用已有话题相关文档和最新文档进行话题信息动态增量扩充,通过对话题特征进行正向融合以及逆向过滤完成对特征信息的抗噪处理,提高话题关联的正确率,有效地解决了话题演化的偏斜问题. The research on the topic evolution mining can obtain the topic information accuratelyand completely at all topic episodes,which is able to help users understand the cause and effect aswell as the correlation and difference of news topic.Thus,it has a very important role in WebNews Search,Network Public Opinion Monitoring,Internet Incident Detection and EmergencyManagement,etc.Owning to lacking the in-depth analysis of the dynamic evolution of topicfeatures over time in the existing work which only uses the mean generalization thought to extendtopic features in the evolution process incrementally,a large number of irrelevant topic information isintroduced into the current work.Meanwhile the low accuracy of the topic associated computationproduced by current work leads to the deviation phenomena of the topic evolution mining.Aimingto deal with this issue,this paper first proposes a feature computation model of the topic-evolution-oriented through introducing the evolution characteristics of the topic feature,and then on this basis,the article conducts the forward fusion and reverse filter under the existing topic-relatedstories and newly arrived stories in order to fulfill the incremental expansion of topic informationand anti-noise processing.The experiment results show that this method improves the topicassociation precision and solve the topic evolution deviation problem effectively.
出处 《计算机学报》 EI CSCD 北大核心 2014年第4期819-832,共14页 Chinese Journal of Computers
基金 国家自然科学基金(61202044 71273010) 四川省教育厅科研基金(12ZB326) 绵阳市网络融合工程实验室开放课题(12ZXWK04) 西南科技大学博士研究基金(12zx7116)资助~~
关键词 话题演化 话题模型 演变特征 演化偏斜 社会计算 社交网络 topic evolution topic model evolution feature evolution deviation social computing social network
  • 相关文献

参考文献10

二级参考文献151

共引文献456

同被引文献179

  • 1许冠英,韩萌,王少峰,贾涛.数据流集成分类算法综述[J].计算机应用研究,2020,37(1):1-8. 被引量:12
  • 2万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 3赵华,赵铁军,于浩,张姝.面向动态演化的话题检测研究[J].高技术通讯,2006,16(12):1230-1235. 被引量:17
  • 4洪宇,张宇,刘挺,李生.话题检测与跟踪的评测及研究综述[J].中文信息学报,2007,21(6):71-87. 被引量:153
  • 5ZHAO Jie, WANG Xueya, MA Zheng. Towards events detec- tion from microblog messages [ J]. International Journal of Hy- brid Information Technology, 2014, 7 (1): 201-210.
  • 6MATHIOUDAKIS M, KOUDAS N. Twittermonitor: trend de- tection over the twitter stream [ C ] //Proc. of SIGMOD, 2010: 1155-1158.
  • 7ZHAO Jie, JIN Peiquan, HUANG Guorui. A survey on detec- ting public emergencies from web pages [ J ]. Advances in In- formation Sciences and Service Sciences, 2011, 3 ( 3 ) : 56-63.
  • 8WENG Jianshu, LEE Bu-Sung. Event detection in twitter [ C] //Proc. of ICWSM, 2011 : 401-408.
  • 9HE Qi, CHANG Kuiyu, LIM Ee-Peng. Analyzing feature traj- ectories for event detection [ C ] // Proc. of SIGIR, 2007 : 207-214.
  • 10ZHAO Jie, LI Xiaowen, JIN Peiquan. A time-enhanced topic clustering approach for news web search [ J ]. International Journal of Database Theory and Application, 2012, 5 (4) : 1-10.

引证文献24

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部