期刊文献+

广义并接图的无符号拉普拉斯谱半径

Signless Laplacian spectral radius of weak joining graphs
在线阅读 下载PDF
导出
摘要 为研究图的无符号拉普拉斯谱半径的界,以图的顶点度di等为参数,通过对图的无符号拉普拉斯矩阵进行相似变换,证明由任意两个图G1和G2得到的广义并接图G的谱半径上确界q(G).由此刻画达到这个上界的极图当且仅当G1和G2均为正则图. To research the bound of the signless Laplacian spectral radius of a graph, taking the vertex degree diand so on of the graph as parameters, by the similarity transformation of the signless Laplacian matrix of the graph, the sharp upper bound q (G) of the signless Laplacian spectral radius of the weak joining graph G is determined, where G is obtained by two random graphs G1 and G2. Based on this, the extremal graph reaching the upper bound is characterized if and only if G1 and G2 are regular graphs.
作者 吴雅容
出处 《上海海事大学学报》 北大核心 2014年第1期92-94,共3页 Journal of Shanghai Maritime University
基金 国家自然科学基金(11226290 11271315)
关键词 广义并接图 无符号拉普拉斯谱 谱半径 weak joining graph signless Laplacian spectrum spectral radius
  • 相关文献

参考文献9

  • 1CVETKOVI C D M, SIMI C S K. Towards a spectral theory of graphs based on the signless Laplacian II [ J ]. Linear Algebra Appl, 2010, 432 (9) 2257 -2272.
  • 2CVETKOVIC D M, SIMIC S K. Towards a spectral theory of graphs based on the signless Laplacian I [ J]. Publ Inst Math Nouvelle Set Toroe 2009, 85(99) : 19-33.
  • 3ZHOU B X. On the signless Laplacian spectral radius of graphs with cut vertices[ J ]. Linear Algebra Appl, 2010, 433 (5) : 928-933.
  • 4LI R, SHI J S. The minimum signless Laplacian spectral radius of graphs with given independence number [ J]. Linear Algebra Appl, 2010, 433(8) : 1614-1622.
  • 5LIU H, LU M, TIAN F. On the Laplacian spectral radius of a graph[J]. Linear Algebra Appl, 2004, 376( 1 ) : 135-141.
  • 6OLIVEIRA C S, de LIMA L S, de ABREU N M M, et al. Bounds on the index of the signless Laplaeian of a graph[ J]. Discrete Appl Math, 2010, 158(4) : 355-360.
  • 7YE M L, FAN Y Z, WANG H F. Maximizing signless Laplacian or adjacent spectral radius of graphs subject to fixed connectivity[ J]. Linear Alge- bra Appl, 2010, 433(6) : 1180-1186.
  • 8BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The Macmillan Press LTD, 1976: 32-51.
  • 9MINC H. Nonnegative matrices[M]. New York: John Wiley & Sons Inc, 1988: 132-159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部