摘要
A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.
A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.
基金
Supported by Program for Changjiang Scholars and Innovative Research Team in University( IRT1208 )