期刊文献+

可数簇全拟-Φ-渐近非扩张映象和广义混合平衡问题以及极大单调算子的收缩投影迭代算法

Hybrid Shrinking Projection Method for a Countable Family of Total Quasi-Φ-Asymptotically Nonexpansive Mappings,a Generalized Mixed Equilibrium Problem and a Maximal Monotone Operator
在线阅读 下载PDF
导出
摘要 先介绍全拟-φ-渐近非扩张映象的概念,然后在具有Kadec—Klee性质的一致光滑、严格凸的Banach空间的框架下,利用混合收缩投影的迭代算法,用以寻求广义混合平衡问题的解集GMEP,可数簇全拟-φ-渐近非扩张映象的不动点集(?)F(S_(i))和极大单调算子的零点集T^(-1)0的公共元.在适当的条件下,证明了逼近于这一公共元的强收敛定理.推广和改进了一些最新结果. The purpose of this paper is first to introduce the concept of total quasi-φ-asympto- tically nonexpansive mapping and then consider a hybrid shrinking projection method for find- ing a common element of the set GMEP of solutions of a generalized mixed equilibrium problem, the set ∞∩i=1 F(Si) of common fixed points of a countable family of total quasi-φ-asymptotically nonexpansive mappings { Si}∞/i=1 and the set T-^1 O of zeros of a maximal mono- tone operator T in a uniformly smooth and strictly convex Banach space with Kadec-Klee property. It is proven that under appropriate conditions, the sequence generated by the hybrid shrinking projection method, converges strongly to some point in GMEP ∩ ^T^-1 O ∩( ∞∩i=1 F(Si)). This new result represents the improvement, complement and development of the previously known ones in the literature.
作者 朱浸华
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期283-302,共20页 Acta Mathematica Scientia
基金 四川省科技厅项目(2012JYZ011) 教育厅重点项目(13ZA0199) 四川省教育厅资助科研项目(14ZA0271)资助
关键词 广义混合平衡问题 全拟-φ-渐近非扩张映象 拟-φ-渐近非扩张映象 拟-φ-非扩张映象 混合收缩投影 β-逆强单调映象 极大单调算子 Generalized mixed eqUlllDrlum proDlem Total quasi-φ-asymptoticallynonexpansive mapping Quasi--asymptotically nonexpansive mapping Quasi-φ-nonexpansive mapping Hybrid shrinking projection β-Inverse strongly monotone mapping Maximal monotone oper-ator.
  • 相关文献

参考文献1

二级参考文献10

  • 1Ceng, Lu-Chuan,Yao, Jen-Chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[].Journal of Computational and Applied Mathematics.2008
  • 2Takahashi, W,Zembayashi, K.Strong and weak convergence theorems for equilibrium prob- lems and relatively nonexpansive mappings in Banach spaces[].Nonlinear Analysis.2008
  • 3Qin, X. L,Shang, M,Su, Y.A general iterative method for equilibrium problem and fixed point problems in Hilbert spaces[].Nonlinear Analysis.2008
  • 4Cioranescu,I.Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems[]..1990
  • 5Alber,Y. I.Metric and generalized projection operators in Banach spaces: properties and ap- plications[].Theory and Applications of Nonlinear Operators of Accretive and Monotone Type.1996
  • 6Matsushita, S,Takahashi, W.Weak and strong convergence theorems for relatively nonex- pansive mappings in Banach spaces[].Fixed Point Theory Appl.2004
  • 7Nilsrakoo, W,Saejung, S.Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings[].Fixed Point Theory Appl.2008
  • 8Blum, E,Oettli, W.From optimization and variational inequalities to equilibrium problems[].The Mathematics Student.1994
  • 9Browder,F. E.Existence and Approximation of Solutions of Nonlinear Variational Inequalities[].Proceedings of the National Academy of Sciences of the United States of America.1966
  • 10TAKAHASHI S,TAKAHASHI W.Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[].Journal of Mathematical Analysis and Applications.2007

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部