期刊文献+

海水淡化反渗透膜技术的最新进展及其应用 被引量:19

Latest progress and applications of seawater RO membrane technology
在线阅读 下载PDF
导出
摘要 反渗透膜(RO)技术是解决世界水危机问题的最有力的工具之一.反渗透膜法海水淡化过程中节能和高脱盐是需要满足的两个问题,然而产水特性与去除溶质之间存在背离平衡,同时满足会较为困难.东丽采用正电子湮灭时间光谱法(PALS)进行膜孔孔径分析,由此得出膜孔大小和RO膜对硼的去除特性显示出相关性.采用透视电子显微镜(TEM)进行RO膜表面构造和形态学分析,获得影响膜的透水性的参数.在上述研究成果的基础上,把分子设计技术应用于海水淡化的高性能RO膜的开发上,在RO膜溶质去除性和透水性相关方面都取得了很大的进展.同时,使用这些研究成果开发了创新性海水反渗透膜,已经在全球最大的海水淡化项目(阿尔及利亚Magtaa,500 000m3/d)和中国最大海水淡化项目(青岛,100 000m3/d)中得到应用. Reverse osmosis (RO) membrane is one of the most effective technical to relief the global water crisis. Energy-saving and high desalination are two major challenges in seawater desalination by RO men:brane; however, there is a departure from the balance between water production and solute removal.In Toray,positron annihilation spectroscopy (PALS) was used to analyze the membrane pore. The results of the research show a good correlation of boron-removal between the membrane pore size and the RO membrane and transmission electron microscope (TEM) was also used to analyze the surface of the RO membrane structure and morphology to gain the parameters affecting the membrane permeable. On the basis of the above results, Toray applied the molecular design technology in the development of seawater desalination RO membrane. It have been made great progress in RO membrane solute removal and permeability. With all these research results, Toray developed a innovative RO membrane which is particularly suitable for seawater desalination. The membrane has been used in the world's largest seawater desalination project (Magtaa, 500 000 m3/d in Algeria) and Chinese largest seawater desalination project (Qingdao, 100 000 m3/d).
作者 徐建国 尹华
出处 《膜科学与技术》 CAS CSCD 北大核心 2014年第2期99-105,共7页 Membrane Science and Technology
关键词 反渗透膜 海水淡化 低能耗 高通量 高脱盐 高脱硼 RO membrane seawater desalination energy-saving high flux high desalination high boron-removal
  • 相关文献

参考文献27

  • 1杨尚宝,郑根江.中国海水淡化年鉴[M].北京:海洋出版社,2012:1.
  • 2朱列平.海水淡化 引导未来[J].高科技与产业化,2011,17(11):47-48. 被引量:1
  • 3John P M, Stuart A M. Pressure exchanger helps re- duce energy costs in brackish water RO system[J]. J Amer Water Works Assoe, 2004,96(11) : 44-48.
  • 4John P M. Retro-fitting existing SWRO systems with a new energy recovery device[J]. Desalination, 2003. 153 (1-3) :253-264.
  • 5WHO. Guidelines for drinking water quality[S]. 2004.
  • 6Taniguchi M, Kurlhara M, Kimura S. Boron reduction performance of reverse osmosis seawater desalination process[J]. J Membr Sci, 2001,183(2) : 259-267.
  • 7Taniguchi M, Fusaoka Y, Nishikawa T, et al. Boron removal in RO seawater desalination[J]. Desalination, 2004,167: 419-426.
  • 8Fukunaga K, Matsukata M, Ueyama K, et al. Reduc- tion of boron concentration in water produced by a re- verse osmosis sea water desalination unit[J]. Mem- brane, 1997,22: 211-216.
  • 9Rodriguez M, Ruiz A F, Chilon M F, et al. Influence of pH in the elimination of boron by means of reverse osmosis[J]. Desalination, 2001,140 : 145- 152.
  • 10Henmi M, Tomioka H, Kawakami T. Performance advancement of high boron removal seawater RO membranes[A]. IDA World Congress on Desalination and Water Reuse, Maspalomas, Gran Canaria, Spain, 2007:7-38.

二级参考文献32

  • 1Liu LiFen, Yu SanChuan, Gao CongJie, et al. Study on a novel polyamidee urea reverse osmosis composite membrane (ICICMPD) (II) Analysis of membrane antifouling performance[J]. J Membr Sci, 2006, 283: 133146.
  • 2Wang Haifeng, Li Lei, Zhang Xiaosa, et al. Polyamide thinfilm composite membranes prepared from a novel triamine 3, 5diaminoN( 4aminophenyl )benzamide monomer and mphenylenediamine [J]. J Membr Sci, 2010,353:7884.
  • 3Wei Xinyu, Wang Zhi, Zhang Zhe, et al. Surface mod ification of commercial aromatic polyamide reverse os mosis membranes by graft polymerization of 3allyl5, 5dimethylhydantoin[J]. J Membr Sci, 2010, 351: 222233.
  • 4Zhang Qifeng, Zhang Suobo , Dai Lei, et al. Novel zwitterionie poly(arylene ether sulfone)s as antifouling membrane material[J]. J Membr Sci, 2010, 349: 217224.
  • 5Kwon Youngnam, Hong Sungpyo, Choi Hyoungwoo,et al. Development of foulingresistant RO membranes using PEGA macromer[J]. Desalination and Water Treatment, 2010,15 :5461.
  • 6Kim YoungJea, Jeong MyungHwan, Lee JaeSuk. Desalination properties of a novel composite membrane with a lamination method[J]. Desalination and Water Treatment, 2010,15 : 190197.
  • 7Park Ki Tae, Kim Sang Gon, Chun ByungHee, etal. Sulfonated poly(arylene ether sulfone)thinfilm corn poslte reverse particles [J]. osmosis membrane containing Si02 nano Desalination and Water Treatment,2010,15:6975.
  • 8Park Junwoo, Choi Wansuk, Kim Sung Hyun, et al. Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes [J]. Desalination and Water Treatment , 2010, 15: 198204.
  • 9Kim Sang Gon, Park Ki Tae, Chun ByungHee, etal. Sulfonated poly(arylene ether sulfone) RO membranes for high water flux and chlorine resistance[J]. Desali nation and Water Treatment, 2010,15 : 205213.
  • 10Loeb S, Sourirajan S. Sea water demineralization by means of an osmotic membrane[M]. Advances in Chemistry Series, 1963, 38:117.

共引文献61

同被引文献136

引证文献19

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部