期刊文献+

Chromosomal Engineering of Escherichia coli for Efficient Production of Coenzyme Q_(10)

染色体工程大肠杆菌高效生产辅酶Q_(10)(英文)
在线阅读 下载PDF
导出
摘要 The plasmid-expression system is routinely plagued by potential plasmid instability. Chromosomal integration is one powerful approach to overcome the problem. Herein we report a plasmid-free hyper-producer E.coli strain for coenzyme Q10 production. A series of integration expression vectors, pxKC3T5b and pxKT5b, were constructed for chemically inducible chromosomal evolution(multiple copy integration) and replicon-free and markerless chromosomal integration(single copy integration), respectively. A coenzyme Q10 hyper-producer Escherichia coli TBW20134 was constructed by applying chemically inducible chromosomal evolution,replicon-free and markerless chromosomal integration as well as deletion of menaquinone biosynthetic pathway.The engineered E. coli TBW20134 produced 10.7 mg per gram of dry cell mass(DCM) of coenzyme Q10 when supplemented with 0.075 g·L-1of 4-hydroxy benzoic acid; this yield is unprecedented in E. coli and close to that of the commercial producer Agrobacterium tumefaciens. With this strain, the coenzyme Q10 production capacity was very stable after 30 sequential transfers and no antibiotics were required during the fermentation process. The strategy presented may be useful as a general approach for construction of stable production strains synthesizing natural products where various copy numbers for different genes are concerned. The plasmid-expression system is routinely plagued by potential plasmid instability. Chromosomal in-tegration is one powerful approach to overcome the problem. Herein we report a plasmid-free hyper-producer E. coli strain for coenzyme Q10 production. A series of integration expression vectors, pxKC3T5b and pxKT5b, were constructed for chemically inducible chromosomal evolution (multiple copy integration) and replicon-free and markerless chromosomal integration (single copy integration), respectively. A coenzyme Q10 hyper-producer Es-cherichia coli TBW20134 was constructed by applying chemically inducible chromosomal evolution, replicon-free and markerless chromosomal integration as well as deletion of menaquinone biosynthetic pathway. The engineered E. coli TBW20134 produced 10.7 mg per gram of dry cell mass (DCM) of coenzyme Q10 when supplemented with 0.075 g·L^-1 of 4-hydroxy benzoic acid;this yield is unprecedented in E. coli and close to that of the commercial producer Agrobacterium tumefaciens. With this strain, the coenzyme Q10 production capacity was very stable after 30 sequential transfers and no antibiotics were required during the fermentation process. The strategy presented may be useful as a general approach for construction of stable production strains synthesizing natural products where various copy numbers for different genes are concerned.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第5期559-569,共11页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(30970089,20876181,21276289) the Natural Science Foundation of Guangdong Province(9351027501000003,S2011010001396)
关键词 coenzyme Q10 Escherichia coli chemically inducible chromosomal evolution replicon-free and markerless chromosomal integration chromosomal engineering 辅酶Q10 大肠杆菌 染色体工程 生产者 染色体整合 生物合成途径 染色体进化 化学诱导
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部