期刊文献+

广义均衡组和非扩张映射映像不动点公共元的强收敛定理

Strong convergence of a new hybrid iterative method for equilibrium problems and variational inequality problems for nonexpansive mappings in Hilbert spaces
原文传递
导出
摘要 建立一个修正的粘性迭代算法,以此来寻求两个广义均衡组的公共解和一组非扩张映射公共不动点集的共同元.获得了在给定的条件下基于Hilbert空间中的强收敛定理.扩展和改进了在此问题上许多作者的相关研究成果. In this paper, we introduce a general iterative scheme tbr finding a common element ot the set of common solutions of generalized equilibrium problems, the set of solutions of a variational ine-quality and the set of fixed points of nonexpansive mappings in a real Hilbert space. Strong conver-gence theorems are established in a real Hilbert space under suitable conditions. Then, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm which solves some optimization problems under some suitable conditions. Our results presented im-prove and extend the corresponding results of many others.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期167-172,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JA11294)
关键词 广义均衡问题 变分不等式 不动点 非扩张映射 逆强单调映射 强正有界线性算子 equilibrium problem variational inequality fixed point nonexpansive mapping inverse-strongly monotone mapping strong positive bounded linear operator
  • 相关文献

参考文献10

  • 1Qin Xiao - long, Cho Y J, Kang S M. Viscosity approximation methods for generalized equilibrium problems and fixed point problems with applications [J]. Nonlinear Analysis, 2010, 72(1):99- 112.
  • 2Qin Xiao -long, Kang S M , Cho Y J , et al. Convergence theorems on generalized equilibrium problems and fixed point prob- lems with applications [J]. Proceeding of the Estonian of Sciences, 2009, 58(3) : 170 -183.
  • 3Plutbieng S, Punpaeng R. A general iterative method for equilibrium problems and fixed point problems in Hilbert space [ J ]. Journal of Mathematical Analysis and Applications, 2007, 336 (1) : 455 -469.
  • 4Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert space [J]. Journal of Mathematical Analysis and Applications, 2007, 331(1) : 506 -515.
  • 5Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space [J]. Nonlinear Analysis, 2008, 69:1 025 -1 033.
  • 6Shimoji K, Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications [ J]. Taiwanes Journal of Mathematics, 2001, 5 (2) : 387 - 404.
  • 7Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems [ J ]. The Mathematics Student, 1994, 63(1/2/3/4) : 123 - 145.
  • 8Combettes P L, Hirstoaga S A. Equilibrium programming in Hilbert space [ J ]. Journal of Nonlinear and Convex Analysis, 2005, 6(1) : 117 -136.
  • 9Marino G, Xu Hong - kun. A general iterative method for nonexpansive mappings in Hilbert space [ J ]. Journal of Mathematical Analysis and Applications, 2006, 318 ( 1 ) : 43 - 52.
  • 10Xu Hong -kun. Viscosity approximation method for nonexpansive mappings [ J]. Journal of Mathematical Analysis and Appli- cations, 2004, 298( 1 ): 279- 291.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部