期刊文献+

One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity 被引量:14

One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity
原文传递
导出
摘要 A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions. A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.
出处 《Nano Research》 SCIE EI CAS CSCD 2013年第12期871-879,共9页 纳米研究(英文版)
基金 This work was supported by the National Basic Research Program (973 Project) of China (Nos. 2013CB934104 and 2012CB224805), the National Natural Science Foundation of China (No. 21210004), the Shanghai Leading Academic Discipline Project (B108), and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500).
关键词 core-shell nanostructures GOLD mesoporous silica synthesis catalysis core-shell nanostructures gold mesoporous silica synthesis catalysis
  • 相关文献

参考文献1

共引文献5

同被引文献48

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部