期刊文献+

采用高速照相机研究介质阻挡放电超四边斑图的时空结构 被引量:4

Spatiotemporal Structure of the Square Superlattice Pattern in Dielectric Barrier Discharge Observed by High-speed Camera
在线阅读 下载PDF
导出
摘要 为了研究介质阻挡放电中超四边形斑图的时空结构,首次采用三通道高速照相机,在外加电压的半个周期内,对此斑图的不同电流脉冲进行瞬态拍照。实验发现:稳定的超四边斑图能在不同的实验条件下得到;在外加电压的每半周期内,超四边斑图的放电电流由3个明显的脉冲组成,其中2个脉冲位于电压绝对值的上升沿,1个位于其下降沿;超四边斑图由3套四边形子结构组成,其中上升沿放电的小点四边形和大点四边形相互嵌套,而在下降沿放电的小点位于大点的中心。经分析发现,壁电荷在超四边斑图时空结构的形成中起到了重要的作用。 In order to analyze the spatiotemporal structure of square superlattice pattern, for the first time, we took the instantaneous pictures corresponding to different current pulses in one shoot, using an intensified charge coupled device (ICCD) camera with three channels. Stable square superlattice patterns are obtained in different experimental conditions. In each half voltage cycle, the current waveform of the pattern is comprised of three current pulses, two of which are at the rising edge of the absolute value of voltage and the third one is at the falling edge. Consequently, the square superlat- tice pattern consists of three square sublattices. Two of them, which are composed of small dots and big dots respectively, represent discharge at the rising edge of the absolute value of voltage and interleave with each other. The other one, formed by small dots, locates at the centre of big dots, and represents at the falling edge of the voltage. Further analysis indicates that wall charges play an important role in forming the spatiotemporal structure of square superlattice patterns.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第4期1229-1234,共6页 High Voltage Engineering
基金 国家自然科学基金(11175054) 博士点基金(20101301110001) 河北省科技厅重点项目(11967135D) 河北省教育厅重点项目(ZD2010140)~~
关键词 介质阻挡放电(DBD) 高速照相机 超四边斑图 时空结构 子结构 壁电荷 dielectric barrier discharge (DBD) intensified charge coupled device square superlattice pattern spati- otemporal structure sublattice wall charge sublattice
  • 相关文献

参考文献23

  • 1Bajaj Kapil M S, Liu J, Brian N, et al. Square patterns in Ray- leigh-b6nard convection with rotation about a vertical axis[J]. Physical Review Letters, 1998, 81 (4): 806-809.
  • 2Rogers J L, Schatz M F, Brausch O, et al. Superlattice patterns in vertically oscillated Rayleigh-b6nard convection[J]. Physical Review Letters, 2000, 85(20): 4281-4284.
  • 3Ouyang Q, Swinney H L. Transition from a uniform state to hexagonal and striped turing patterns[J]. Nature, 1991,352:610-612.
  • 4Vanag Vladimir K, Yang L F, Milos D, et al. Oscillatory cluster pat- terns in a homogeneous chemical system with global feedback[J]. Nature, 2000, 406:389-391.
  • 5Page K M, Maini P K, Monk N A M. Complex pattern formation in reaction-diffusion systems with spatially varying parameters[J]. Phy- sica D, 2005, 202(1/2): 95-115.
  • 6Logvin Y A, Samson B A, Afanas'ev A, et al. Triadic Hopfstatic structure in two-dimensional optical pattern formation[J]. Physical Review E, 1996, 54(5):4548-4551.
  • 7Degtiarev E V, Vorontsov M A. Dodecagonal patterns in a kerrslice/feedback-mirror type optical system[J]. Journal of Modem Optics, 1996, 43(1): 93-98.
  • 8Logvin Yu A, Ackemann T. Interaction between Hopf and static insta- bilities in a pattern-formation optical system[J]. Physical Review E, 1998, 58(2): 1654-1661.
  • 9Alessandro G D, Firth W J. Spontaneous hexagon tbrmation in a non- linear optical medium with feedback mirror[J]. Physical Review Letters, 1991, 66(20): 2597-2600.
  • 10Sakai O, Sakaguchi T, Tachibana K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Applied Physics Letters, 2005, 87(24): 1505-1507.

二级参考文献34

  • 1王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300. 被引量:40
  • 2Roth J R. Industrial plasma engineering [M]. Bristol and Philadelphia, USA: Institute of Physics Publishing, 1995.
  • 3Crick A. Cold plasma in materials fabrication: from fundamentals to application[M]. New York, USA: IEEE, 1994.
  • 4Yokoyama T, Kogoma M, Kanazawa S, et al. The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films [J]. Journal of Physics D: Applied Physics, 1990, 23(3): 374-377.
  • 5Montie T C, Kelly-Wintenberg K, Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J]. IEEE Transaction on Plasma Science, 2000, 28(1) : 41-50.
  • 6Nozaki T, Kimura Y, Okazaki K. Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD [J]. Journal of Physics D: Applied Physics, 2002, 35(21): 2779-2785.
  • 7Kogelschatz U. Filamentary, patterned, and diffuse barrier discharge [J]. IEEE Transactions on Plasma Science, 2002, 30(4): 1400-1408.
  • 8Okazaki S, Kogoma M, Uehara M. Appearance of stable glow discharge in air, oxygen, nitrogen at atmospheric pressure using a 50Hz source [J]. Journal of Physics D: Applied Physics, 1993, 26(5): 889-892.
  • 9Massines F, Gherardi N, Naude N, et al. Glow and townsend dielectric barrier discharge in various atmosphere [J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): 577-588.
  • 10Luo Hai-yun, Liang Zhuo, Lu Bo, et al. Observation of the transition from a townsend discharge to a glow discharge in helium at atmospheric pressure [J]. Appllied Physics Letters, 2007, 91(22): 221504.

共引文献68

同被引文献13

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部