期刊文献+

对转开式转子非定常气动干扰特性分析 被引量:14

Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor
原文传递
导出
摘要 采用动态面搭接技术,求解非定常雷诺平均Navier-Stokes方程实现对转开式转子的非定常气动数值模拟.对10片桨叶单个转子和10×10对转开式转子构型分别进行模拟,对比分析前后两个转子间的气动干扰和滑流流动干扰.结果表明:与单个转子相比,对转开式转子前转子的拉力系数和功率系数减小,后转子的拉力系数和功率系数则都增大,并在一个旋转周期内都呈现20次周期性波动.前后转子拉力系数的频谱分析显示振荡发生在桨叶通过频率的偶数倍,且在2倍时后转子拉力的振幅最大.前转子桨尖涡与后转子的周期性干扰,引起后转子桨叶力分布的变化和非定常性.与单个转子相比,前转子后滑流轴向速度偏大,周向速度偏小.后转子对滑流有二次加速及旋涡恢复作用. Unsteady aerodynamics of contra rotating open rotor(CROR)was simulated by solving unsteady Reynolds averaged Navier-Stokes equations based on dynamic patched technology.To analyze the aerodynamic interactions and slipstream flows interactions between the front-rotor and aft-rotor,a 10×10CROR configuration was adopted and compared with the 10-bladed single rotor.Result shows that,compared with the single rotor,the thrust coefficients and power coefficients of the front-rotor decrease while those of the aft-rotor increase,with 20periodical oscillations during one rotation period.The spectral analysis of front-rotor and aft-rotor thrust coefficients show that the fluctuations occur at even multiple numbers of blade passing frequency of single rotor,and the amplitude of aft-rotor thrust at twice the blade passing frequency is prominent.Due to the periodical passing of blade tip vortices of front-rotor,the thrust distributions on aft-rotor blade are changed and fluctuate unsteadily.Compared with the single rotor,the axial velocity increases while the cirumferential velocity decreases in the slipstream behind front-rotor.The aft-rotor accelerates the slipstream while recovers swirls.
作者 夏贞锋 杨永
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第4期835-843,共9页 Journal of Aerospace Power
关键词 对转开式转子 气动特性 非定常流动 动态面搭接网格 频谱分析 涡结构 干扰 contra rotating open rotor aerodynamic characteristic unsteady flow dynamic patched grid spectral analysis structure of vortex flow interaction
  • 相关文献

参考文献17

  • 1M'Bengue L. Toward ACARE 2020 : innovative engine ar chitectures to achieve the environmental goals[-R. Nice, France: 27th International Congress of the Aeronautical Sciences,2010.
  • 2Hager R D, Vrabel D. Advanced turboprop project [R]. NASA SP-495, NASA, 1988.
  • 3Harris R W, Cuthbertson R D. UDF/727 flight test pro- gram[R]. AIAA 87-1733,1987.
  • 4Whitlow J B,Sievers G K. NASA advanced turboprop re search and concept validation program[R]. NASA Techni- cal Memorandum 100891,1988.
  • 5Strack W C,Knip G,Weisbrich A L,et al. Technology and benefits of aircraft counter rotation propellers[R]. NASA Technical Memorandum,TM82983,1982.
  • 6Stuermer A. Unsteady CFD simulations of contra rotating propeller propulsion systems[R]. AIAA-2008-5218,2008.
  • 7Stuermer A, Yin J P. Low-speed aerodynamics and aeroacoustics of CROR propulsion systems [R]. AIAA- 2009-3134,2009.
  • 8Stuermer A, Yin J P. Aerodynamic and aeroacoustic instal- lation effects for pusher configuration CROR propulsion systems[R]. AIAA 2010-4235,2010.
  • 9Laban M,Kok J C,Prananta B 13. Numerical tools for con- tra-rotating open-rotor performance, noise and vibration assessment[R]. Nice, France: 27th International Congress of the Aeronautical Sciences, 2010.
  • 10Lepot I, Leborgne M, Schnell R. et al. Aero-machenical op- timization of a contra rotating open rotor and assessment of its aerodynamic and acoustic characteristics[R]. Istan bul, Turkey : European Turbomaehinery Conference, 2011.

二级参考文献13

  • 1鄂秦,杨国伟,李凤蔚,何植岱,傅大卫.螺桨滑流对全机绕流干扰的数值计算[J].航空学报,1996,17(4):439-442. 被引量:4
  • 2Roosenboom E, Stuermer A, Schroder A. Advanced ex perimental and numerical validation and analysis of propel ler slipstream flows[J]. Journal of Aircraft, 2010, 47(1) 284-291.
  • 3Stuermer A, Rakowitz M. Usteady simulation of a trans- port aircraft propeller using MEG-AFLOW[R]. Meeting Proceeding RTO MP AVT 123, 2005: 1-14.
  • 4Stuermer A. Unsteady CFD simulations of propeller in stallation effects[R], AIAA2006 4969, 2006.
  • 5Bousquet J, Gardarein P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aero- space Science and Technology, 2003(7) :465-472.
  • 6Khier W. Time accurate versus actuator disk simulations of complete helicopters[C]//Nagel W E, Resch M, Jaiger W. High Performance Computing in Science and Engineer- ing'05. 2006: 209-220.
  • 7Stuermer A. Unsteady Euler and Navier Stokes simula tions of propellers with the unstrucutred DLR TAU-code [C]//Rath H J, Holze C, Heinemann H J, et al. New Results in Numerical and Experimental Fluid Mechanics V. 2006, 144-151.
  • 8Thomas J, Waiters R, Reu T, et al. Application of a patched-grid algorithm to the F/A-18 forebody-leading- edge extension configuration [J]. Journal of Aircraft, 1990, 27(9): 749-756.
  • 9Bohbot J, Grondin G, Corjon A, et al. A parallel multigrid conservative patched/sliding mesh algorithm for turbulentflow computation of 3D complex aircraft configurations[R]. AIAA 2001 1006, 2001.
  • 10Rumsey C, Sanetrik M, Biedron R, et al. Efficiency and accuracy of time-accurate turbulent Navier-Stokes compu- tations[J]. Computers & Fluids, 1996, 25(2): 217-236.

共引文献29

同被引文献84

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部