期刊文献+

基于HLLE-SVM预测混合炸药爆轰性能 被引量:1

Prediction of the Composite Explosion Parameters by HLLE-SVM
在线阅读 下载PDF
导出
摘要 为了预测炸药爆轰参数并提高预测精度,提出一种将Hessian局部线性映射算法(HLLE)和支持向量机理论(SVM)相结合的预测方法。选取16种传统混合炸药作为研究对象,利用Hessian局部线性映射算法理论,对原始数据进行降维处理,再将降维后的数据作为输入,应用SVM对炸药爆速、爆热做回归预测,采用遗传算法(GA)选取最佳惩罚因子、核函数参数,将预测结果与文献值对比分析,预测相对误差在±3%之内。最后将该方法应用于新型熔铸混合炸药2,4-二氨基-3,5-二硝基-1-氧吡嗪(LLM-105)/1-甲基-3,5-二硝基-1,2,4-三唑(DNMT)和LLM-105/1-甲基-4,5-二硝基咪唑(4,5-MDNI)爆速预测,与试验值做比较,相对误差分别为2.91%、3.72%。结果表明,该方法对混合炸药爆轰参数预测误差较小,模型精度较高。 In order to improve the prediction accuracy of the detonation parameters,a new method based on Support Vector M achine( SVM) theory and Hessian Local Linearly Embedding algorithm( HLLE) was proposed to predict 16 traditional composite explosives. The original data after dimension reduction w ith HLLE,w as input to regressively predict the heat and velocity of composite explosion by SVM.T he best kernel function parameter and penalty factor are selected by Genetic Algorithm( GA). T he calculated results of the explosives almost agree w ith those of the literature,and the relative error is w ithin ± 3%. U sing the method,the values of detonation velocity for 2,4-diamino-3,5-dinitro pyrazine-1-oxide /1-methyl-3,5-dinitro-1,2,4-triazole and 2,4-diamino-3,5-dinitro pyrazine-1-oxide /1-methyl-4,5-dinitroimidazole w ere predicted and compared w ith experimental and the relative errors are 2. 91% and 3. 72%,respectively,show ing that the proposed method is comparatively accurate.
出处 《含能材料》 EI CAS CSCD 北大核心 2014年第2期221-225,共5页 Chinese Journal of Energetic Materials
基金 火炸药国防专项资助
关键词 物理化学 混合炸药 支持向量机(SVM) Hessian局部线性映射算法(HLLE) 爆轰参数 physical chemistry composite explosive Support Vector Machine (SVM) Hessian Local Linearly Embedding algo-rithm (HLLE) detonation parameters
  • 相关文献

参考文献9

  • 1王晓峰.军用混合炸药的发展趋势[J].火炸药学报,2011,34(4):1-4. 被引量:58
  • 2常艳,张奇.含铝炸药爆炸能量预估[J].含能材料,2012,20(6):770-774. 被引量:8
  • 3Samuel P,Hernandez-Rivera,Ricardo Infante-Castillo.Predicting heats of explosion of nitroaromatic compounds through NBO charges and 15NNMR chemical shifts of nitro groups[J].Computational and Theoretical Chemistry,2011,963 (2-3):279-283.
  • 4袁方强,蔡从中,赵帅.用结构参数预测硝基类炸药的撞击感度[J].爆炸与冲击,2013,33(1):79-84. 被引量:8
  • 5H Muthurajana,R Sivabalanb,N PonSaravananb,et al.Computer code to predict the heat of explosion of high energy materials[J].Journal of Hazardous Materials,2009,161:714-717.
  • 6Siamak Safarzadegan Gilan,Hamed Bahrami Jovein,Ali Akbar Ramezanianpour.Hybrid support vector regression-particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin[J].Construction and Building Materials,2012,34:321-329.
  • 7Narwaria,Manish,Weisi Lin.Objective image quality assessment based on support vector regression[J].Neurai Networks,2012,21 (3):515-519.
  • 8Vladimir N.Vapnik.Statistical Learning Theory[M].New York:Jone Wileg,1988.
  • 9刘俊娥,曾凡雷,郭章林.基于RS-SVM模型的煤与瓦斯突出多因素风险评价[J].中国安全科学学报,2011,21(7):21-26. 被引量:15

二级参考文献52

共引文献83

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部