期刊文献+

基于小波的非平稳时间序列预测方法研究 被引量:13

Research on non-stationary time series forecasting method based on wavelet
在线阅读 下载PDF
导出
摘要 基于小波分析技术,将原始非平稳时间序列分解为一层近似系数和多层细节系数,对其分别采用自回归滑动平均模型以及BP神经网络模型,对各层系数进行建模与预测;通过整合各层系数,得到原始时间序列的预测值。运用这种方法对因特网某节点网络流量数据和某地区日最高气温数据进行预测的结果表明,建立在小波分解基础上的这两种方法都能够有效地应用于非平稳时间序列的预测;而小波-BP神经网络的预测方法无论是精度还是计算复杂度方面都要明显优于小波-ARMA方法。 According to the theory of wavelet analysis, a non-stationary time series forecasting method which is based on wavelet is put forward. Through the wavelet decomposition and single reconstruction, the original non-stationary time series is decomposed into a layer of approximation coefficients and several layers of detail coefficients. In the next step, each layer of coefficients is used to model and forecast, using the Auto-Regressive and Moving Average(ARMA)model once, and the BP neural network model once. After integrating layers of coefficients, the predictive value of the original time series is obtained. The result of the experiment, in which the network traffic data of internet nodes and daily maximum temperature data is used to model and forecast, demonstrates good accuracy of the method mentioned above. And it also shows that the prediction accuracy and curve fitting of the model using the BP neural network are better, which means that this model can be applied to the analysis and forecasting of non-stationary time series.
作者 黎志勇 李宁
出处 《计算机工程与应用》 CSCD 2014年第10期38-43,共6页 Computer Engineering and Applications
基金 国家自然科学基金-广东联合基金重点项目(No.U073500)
关键词 非平稳时间序列 小波变换 自回归移动平均模型 BP神经网络 non-stationary time series wavelet transform wavelet analysis Auto-Regressive and Moving Average (ARMA)model BP neural network
  • 相关文献

参考文献16

  • 1Box G E P,Jenkins G M,Reinsel G C.Time series anal- ysis : forecasting and control[M].4th ed.[S.l.] :Wiley, 2008.
  • 2高紫光,路磊.非平稳时间序列的状态空间建模与预测[J].系统工程,1998,16(3):54-59. 被引量:16
  • 3Kitagawa G, Gersch W.A smoothness priors-state space modeling of time series with trend and seasonality[J].Joumal of the American Statistical Association, 1984 : 378-388.
  • 4Ng C N, Young P C.Recursive estimation and forecasting of non-stationary time series[J].Journal of Forecasting, 1990,9(2) : 173-204.
  • 5Bowerman B L,O'Connell R.Forecasting and time series: an applied approach[M].3rd ed.Miami University,1979.
  • 6Yu I, Kim C.A novel short-term load forecasting technique using wavelet transform analysis[J].Electric Machines and Power Systems, 2000,28 : 537-549.
  • 7Chui C K.An introduction to wavelets[M].New York: Academic Press, 1992.
  • 8Hernadez E,Weiss G.A first course on wavelets[M].New York:CRC Press, 1996.
  • 9Daubechies I.Ten lectures on wavelets[M].Vermont: Capital City Press, 1992.
  • 10Mallat S G.Multi-frequency channel decompositions of im- ages and wavelet models[J].IEEE Transactions on Acous- tics, Speech and Signal Processing, 1989,12 : 2091-2110.

二级参考文献35

  • 1方建安,邵世煌.采用遗传算法学习的神经网络控制器[J].控制与决策,1993,8(3):208-212. 被引量:28
  • 2曲文龙,樊广佺,杨炳儒.基于支持向量机的复杂时间序列预测研究[J].计算机工程,2005,31(23):1-3. 被引量:32
  • 3雷霆,余镇危.一种网络流量预测的小波神经网络模型[J].计算机应用,2006,26(3):526-528. 被引量:33
  • 4刘杰,黄亚楼.基于BP神经网络的非线性网络流量预测[J].计算机应用,2007,27(7):1770-1772. 被引量:66
  • 5徐国祥.统计预测和决策[M].上海:上海财经大学出版社,2001.154-176.
  • 6Yu I, Kim C.A novel short-term load forecasting technique using wavelet transform analysis[J].Electfic Machines and Power Systems, 2000,28: 537-549.
  • 7Moraitis N.ANN prediction models for outdoor SIMO millimeter band system[C]//4th IFIP Conference on Artificial lntelligence and Innovations,2007.
  • 8VapnikV N.The nature of statistical learning theory[M].2nd ed. New York: Springer-Verlag, 1999.
  • 9Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters (S1370-4621 ), 1999, 9(3) :293-300.
  • 10Wang Xiaodong, Zhang Haoran, Zhang Changjiang.Prediction of chaotic time series using LS-SVM with automatic parameter sclection[C]//Proceedings of the 6th international Conference on Parallel and Distributed Computing, Applications and Technologies, 2005.

共引文献204

同被引文献100

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部