期刊文献+

基于线性反馈控制的一类混沌系统的同步 被引量:11

Synchronization of a Chaos System Based on Linear Feedback Control
在线阅读 下载PDF
导出
摘要 研究一类混沌系统的同步问题。基于李雅普诺夫稳定性理论,利用线性反馈法给出了同步混沌系统的3种控制方案,得到了2个混沌系统同步的充分条件。为了更清楚地了解每种方案下系统的同步行为,还给出了以增益为分岔参数时同步误差的变化图。理论分析和数值仿真结果都表明了文中所给方法的有效性和可行性。 Synchronization problem of a chaotic system was investigated. Based on Lyapunov stability theorem,Three linear control schemes were given to synchronize two chaotic systems using linear feed- back control, and the sufficient conditions for achieving synchronization of two systems were derived. In order to explore the synchronization behavior of each scheme, gain Was taken as a bifurcation parameter to see how the synchronization errors evolves with variation of the parameter. Theoretical analysis and numerical simulation results show the method given in this paper is effective and feasible.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期114-120,共7页 Periodical of Ocean University of China
基金 国家自然科学基金项目(60974025)资助
关键词 混沌同步 线性反馈 渐近稳定 chaos synchronization linear feedback asymptotically stable
  • 相关文献

参考文献13

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990, 64(3): 1196-1199.
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990, 64: 821-824.
  • 3Strogatz S H. Nonlinear Dynarnicsand Chaos: With Applications to Physics, Biology, Chemistry and Engineering[M]. Boston: Per seus Books Publ, 1994.
  • 4张小红,王伟.异维异构混沌系统同步及其在保密通信中的应用[J].计算机科学,2012,39(4):220-222. 被引量:6
  • 5王光瑞,陈式刚.混沌的控制、同步与应用[M].北京:国防工业出版社,2001.
  • 6Sun M, Tian LX, Jiang S, et al. Feedback control and adaptive control of the energy resource chaotic system[J]. Chaos, Solitons and Fractals, 2007, 32:1725-1734.
  • 7Mobammad P A, Sohrab K, Ghassem A. Finite-time synchroniza tion of two different chaotic systems with unknown parameters via sliding mode technique [J]. Applied Mathematical Modelling, 2011, 35: 3080-3091.
  • 8Ghosh D, Banerjee S. Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications[J]. PhysRevE, 2008, 78(3): 056211:1 -8.
  • 9李华青,廖晓峰,黄宏宇.基于神经网络和滑模控制的不确定混沌系统同步[J].物理学报,2011,60(2):141-145. 被引量:11
  • 10Haeri M, Emadzadeh A A. Synchronizing different chaotic sys- tems using active sliding mode control[J]. Chaos, Solutions and Fractals, 2007, 31: 119-129.

二级参考文献28

共引文献40

同被引文献87

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部