期刊文献+

基于高阶耗散紧致格式的GMRES方法收敛特性研究 被引量:6

Convergence Property Investigation of GMRES Method Based on High-order Dissipative Compact Scheme
原文传递
导出
摘要 计算效率较低是当前限制高阶精度计算方法应用的重要因素。为了提高高阶精度混合型耗散紧致格式(HDCS)的计算效率,发展了适合多块对接网格的广义最小残值(GMRES)方法,并利用GMRES方法开展了HDCS格式的加速收敛研究。首先研究了GMRES的预处理方法、CFL数和内层迭代步数对HDCS数值模拟收敛特性的影响,计算结果显示:点松弛方法是一种高效的预处理方法;CFL数对计算收敛速度影响较大;GMRES方法存在最优的内层迭代步数。利用GMRES方法完成了NACA 0012翼型绕流、NLR 7301翼型绕流和DLR-F4翼身组合体绕流的数值模拟,并与其他隐式时间推进方法进行了对比,GMRES方法计算更加稳定,并且计算效率相对LU-SGS(Lower-Upper Symmetric Gauss-Seidel)方法可以提高5倍以上。研究结果表明,本文发展的GMRES方法在多块对接网格中具有良好的计算稳定性,计算结果的残差可以收敛到更低的量级,并且可以较大幅度地提高高阶精度数值模拟的计算效率。 Low computational efficiency is an important factor constraining the application of high-order numerical methods.To improve the computational efficiency of hybrid cell-edge and cell-node dissipative compact scheme (HDCS),a generalized minimum residual (GMRES) algorithm suitable for multi-block structured grids is developed to accelerate simulations.The influence of GMRES’s precondition methods,CFL number and sub-iteration number on convergence property of HDCS high-order simulations is investigated.It is shown that the point relaxation method is an efficient precondition method,that the CFL number can greatly affect the computational efficiency,and that GMRES has an optimal sub-iteration number.GMRES is applied to simulations of NACA 0012 airfoil,NLR 7301 airfoil and DLR-F4 wing/body configuration,and is compared with other implicit time integration methods.By using GMRES,the computation becomes more stable,and the computational efficiency can be improved by more than 5 times when compared with the LU-SGS(Lower-Upper Symmetric GaussSeidel) method.The results indicate that the GMRES method developed in this paper has good stability in multi-block structured grids,the residual can converge to lower levels,and GMRES can greatly improve the computational efficiency of high-order simulations.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第5期1181-1192,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11072259) 国家"973"计划(2009CB723801)~~
关键词 隐式时间推进方法 数值方法 高阶精度格式 HDCS GMRES 收敛特性 计算效率 implicit time integration method numerical methods high-order scheme HDCS GMRES convergence property computational efficiency
  • 相关文献

参考文献28

  • 1Jiang G S,Shu C W.Efficient implementation of weighted eno schemes[J].Journal of Computational Physics,1996,126(1):202-228.
  • 2Deng X G,Zhang H X.Developing high-order weighted compact nonlinear schemes[J].Journal of Computational Physics,2000,165(1):22-44.
  • 3Deng X G,Mao M L,Jiang Y,et al.New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes,AIAA-2011-3857[R].Reston:AIAA,2011.
  • 4Deng X G,Jiang Y,Mao M L,et al.Developing hybrid ceil-edge and cell-node dissipative compact scheme for complex geometry flows[C]//The Ninth Asian Computational Fluid Dynamics Conference,2012:1-11.
  • 5DENG XiaoGang,JIANG Yi,MAO MeiLiang,LIU HuaYong,TU GuoHua.Developing Hybrid cell-edge and cell-node Dissipative Compact Scheme for Complex Geometry Flows[J].Science China(Technological Sciences),2013,56(10):2361-2369. 被引量:11
  • 6Zhang L P,Liu W,He L X,et al.A class of hybrid dg/fv methods for conservation laws I:basic formulation and one-dimensional systems[J].Journal of Computational Physics,2012,231(4):1081-1103.
  • 7Deng X G,Mao M L,Tu G H,et al.Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2011,230(4):1100-1115.
  • 8Deng X G,Min Y B,Mao M L,et al.Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2013,239:90-111.
  • 9Jiang Y,Deng X G,Mao M L,et al.Large eddy simulation based on seventh-order dissipative compact scheme[C]//The Ninth Asian Computational Fluid Dynamics Conference,2012:1-9.
  • 10Jiang Y,Mao M L,Deng X G,et al.Effect of surface conservation law on large eddy simulation based on seventh-order dissipative compact scheme[J].Applied Mechanics and Materials,2013,419:30-37.

二级参考文献51

  • 1Kunz R F, Lakshminarayana B. Stability of explicit Navi er-Stokes procedures using k-e and /co algebraic Reynolds stress turbulence models. Journal of Computational Phys- ics, 1992, 103(1) 141-159.
  • 2Liu F, Zhang X. A strongly coupled time-marching meth- od for solving the Navier-Stokes and/oJ turbulence model equations with multigrid. Journal of Computational Phys ics, 1996, 128(2): 289-300.
  • 3Barakos G, Drikakis D. Implicit unfactored implementa tion of two-equation turbulence models in compressible Navier-Stokes methods. International Journal for Numeri cal Methods in Fluids, 1998, 28(1): 73-94.
  • 4Lee S, Choi D W. On coupling the Reynolds-averaged Navier-Stokes equations with two equation turbulence model equations. International Journal for Numerical Methods in Fluids, 2006, 50(2) 165-197.
  • 5Yang J, Hsieh T, Wang C. Implicit weighted essentially nonoscillatory schemes with antidiffusive flux compressible viscous flows. AIAAJournal, 2009, 47(2): 1435 1444.
  • 6Huang J, Lin H, Yang J. Implicit preconditioned WENO scheme {or steady viscous flow computation. Journal ofComputational Physics, 2009, 228(2): 420-438.
  • 7Jahangirian A, Hadidoolabi M. An implicit solution of the unsteady Navier-Stokes equations on unstructured moving grids. ICAS-24, 2004.
  • 8Spalart P R, Allmaras S R. A one equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1994, 1(1) 5 21.
  • 9Yoon S, Jameson A. A multigrid LU SSOR scheme for approximate Newton iteration applied to the Euler equa- tions. NASA CR-179524, 1986.
  • 10Roe P L. Approximate Riemann solvers, parameter vec tors and difference schemes. Journal of Computational Physics, 1981, 43(2) 357-:372.

共引文献31

同被引文献44

  • 1陈军,王正华,李晓梅.CFD并行应用程序的可扩展性分析[J].空气动力学学报,2002,20(z1):21-26. 被引量:2
  • 2刘昕,邓小刚,毛枚良,宗文刚.高精度格式WCNS-E-5计算物面热流[J].计算物理,2005,22(5):393-398. 被引量:7
  • 3李劲杰,王刚,史爱明,杨永年.基于非结构网格流场计算的网格重排序[J].航空计算技术,2005,35(3):25-28. 被引量:3
  • 4邓小刚,刘昕,毛枚良,张涵信.高精度加权紧致非线性格式的研究进展[J].力学进展,2007,37(3):417-427. 被引量:21
  • 5Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [ J ]. Journal of Computational Physics, 1996, 126(1): 202-228.
  • 6Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
  • 7Deng X G, Mao M L, Jiang Y, et al. New high-order hy- brid cell-edge and cell-node weighted compact nonlinear schemes, AIAA-2011 3857[R]. Reston.- AIAA, 2011.
  • 8Vinokur M. An analysis of finite-difference and finite-vol- ume formulations of conservation laws [J]. Journal of Computational Physics, 1989, 81(1) : 1-52.
  • 9Thomas P D, Lombard C K. Geometric conservation law and its application to flow computations on moving grids [J]. AIAAJournal, 1979, 17(10): 1030-1037.
  • 10Deng X G, Mao M L, Tu G H, et al. Geometric conser- vation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computa- tional Physics, 2011, 230(4): 1100-1115.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部