期刊文献+

一种基于支持向量机的特征选择算法 被引量:6

A Multi-class Feature Selection Algorithm Based on Support Vector Machine
在线阅读 下载PDF
导出
摘要 当特征集合存在强相关的特征子集且共同对分类问题有重要贡献时,传统方法通常从该子集中随机选择一个特征,导致数据可读性和分类性能下降.为此,面向多分类问题,提出一种基于支持向量机的特征选择算法,并设计一种快速迭代算法.该算法能够自动选择或剔除强相关的特征子集,在得到有效特征的同时实现特征降维.利用人工数据集和标准数据集进行试验,结果表明文中算法在特征选择可行性和有效性方面都有良好表现. Most existing feature selection algorithms usually select only one feature randomly from the highly correlated feature subset with great contribution to classification,which results in the degradation of data readability and classification performance. To overcome the problem, a multi-class feature selection algorithm based on support vector machine ( MFSSVM ) is proposed. The proposed feature selection algorithm permits highly correlated features to be selected or removed together, and it allows dimension reduction while obtaining effective features. The experimental results on both simulated datasets and benchmark datasets illustrate the feasibility and effectiveness of the feature set selected by MFSSVM.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第5期463-471,共9页 Pattern Recognition and Artificial Intelligence
基金 国家科技重大专项项目(No.2010ZX03006-002)资助
关键词 特征选择 支持向量机 分类 Feature Selection Support Vector Machine Classification
  • 相关文献

参考文献22

  • 1] Rodgers J L, Nicewander W A. Thirteen Ways to Look at the Corre- lation Coefficient. The American Statistician, 1988,42( 1 ) : 59-66.
  • 2Hua J P, Tembe W D, Dougherty E R. Performance of Feature-Se- lection Methods in the Classification of High-Dimension Data. Pat- tern Recognition, 2009, 42 (3) : 409-424.
  • 3Foithong S, Pinngern O, Attachoo B. Feature Subset Selection Wrapper Based on Mutual Information and Rough Sets. Expert Sys- tems with Applications, 2012, 39( 1 ) : 574-584.
  • 4Uncu0, Ttlrken L B. A Novel Feature Selection Approach: Combi- ning Features Wrappers and Filters. Information Science, 2007, 177(2) : 449-466.
  • 5Szedmak S, Shawe-Taylor J, Saunders C, et al. Multiclass Classifi- cation by lI Norm Support Vector Machine // Proc of the Pattern Recognition and Machine Learning in Computer Vision Workshop. Grenoble, France, 2004 : 1 - 19.
  • 6薛晖,陈松灿.基于局部性正则化推广误差界的特征选择算法[J].模式识别与人工智能,2011,24(4):473-478. 被引量:3
  • 7Vapnik V N. Statistical Learning Theory. New York, USA: Wileylnterscience, 1998.
  • 8Guyon I, Weston J, Bamhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 2002, 46(1/2/3) : 389-422.
  • 9Duan K B, Rajapakse J C, Wang H Y, et al. Mu|tiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Trans on Nanobioscienee, 2005, 4(3 ) : 228-234.
  • 10Mundra P A, Rajapakse J C. SVM-RFE with MRMR Filter for Gene Selection. IEEE Trans on NanoBioseience, 2010, 9 ( 1 ) : 31-37.

二级参考文献11

  • 1詹德川,周志华.基于相关投影分的特征选择算法[J].计算机科学与探索,2007,1(2):138-145. 被引量:2
  • 2毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 3Duda R O, Hart P E, Stork D G. Pattern Classification. New York, USA: John Wiley & Sons, 2003.
  • 4Guyon I,Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 2003, 3 : 1157 - 1182.
  • 5Ng W W Y, Yeung D S, Firth M, et al. Feature Selection Using Localized Generalization Error for Supervised Classification Problems Using RBFNN. Pattern Recognition, 2008, 41 (12) : 3706 -3719.
  • 6Yeung D S, Ng W W Y, Wang D, et al. Localized Generalization Error and Its Application to Architecture Selection for Radial Basis Function Neural Network. IEEE Trans on Neural Networks, 2007, 18(5) : 1294 -1305.
  • 7Xue Hui, Chen Songcan, Zeng Xiaoqin. Classifier Learning with a New Locality Regularization Method. Pattern Recognition, 2008, 41 (5) : 1479 -1490.
  • 8Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Technique for Embedding and Clustering// Proc of the 15th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2001:585 -591.
  • 9Bhattacharjee A, Richards W G, Staunton J, et al. CLassification of Humanlung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses // Proc of the National Academic Science, 2001, 98(24): 13790-13795.
  • 10Mitra P, Murthy C A, Pal S K. Unsupervised Feature Selection U sing Feature Similarity. IEEE Trans on Pattern Analysis and Ma chine Intelligence, 2002, 24 ( 3 ) : 301 - 312.

共引文献2

同被引文献85

  • 1陈鹏,刘爽,左莉,李锡祚.基于数据分布规律的分段组合支持向量机研究[J].微电子学与计算机,2015,32(3):94-99. 被引量:3
  • 2胡明珠,李康.两种临床诊断方法效果的ROC曲线比较[J].数理医药学杂志,2005,18(4):293-296. 被引量:14
  • 3宋花玲,贺佳,虞慧婷,李玲.应用ROC曲线下面积对两相关诊断试验进行评价和比较[J].第二军医大学学报,2006,27(5):562-563. 被引量:73
  • 4彭丽芳,孟志青,姜华,田密.基于时间序列的支持向量机在股票预测中的应用[J].计算技术与自动化,2006,25(3):88-91. 被引量:32
  • 5Baughman W C,Corteville J E, Shah R R. Placenta Accreta: Spec-trum of US and MR Imaging Findings. RadioGraphics,2008,28(7): 1905-1916.
  • 6Lax A, Prince M R, Mennitt K W,et al. The Value of SpecificMR1 Features in the Evaluation of Suspected Placental Invasion.Magnetic Resonance Imaging, 2007, 25(1) : 87-93.
  • 7Derman A Y,Nikac V, Haberman S, et al. MRI of Placenta Accre-ta: A New Imaging Perspective. American Journal of Roentgenolo-gy, 2011, 197(6): 1514-1521.
  • 8Fayyad U M, Irani K B. Multi-interval Discretization of Continuous-Valued Attributes for Classification Learning // Proc of the 13th In-ternational Joint Conference on Artificial Intelligence. Chambery,France, 1993,II: 1022-1027.
  • 9Ding C, Peng H C. Minimum Redundancy Feature Selection fromMicroarray Gene Expression Data. Journal of Bioinformatics andComputational Biology, 2005,3(2) : 185-205.
  • 10Peng H C, Long F H, Ding C. Feature Selection Based on MutualInformation : Criteria of Max-Dependency, Max-Relevance, andMin-Redundancy. IEEE Trans on Pattern Analysis and Machine In-telligence, 2005, 27(8) : 1226-1238.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部