期刊文献+

基于全局状态估计的多传感器加权数据融合算法 被引量:9

Multi-sensor Weighted Data Fusion Algorithm Based on Global State Estimation
在线阅读 下载PDF
导出
摘要 自学习最小二乘加权数据融合算法已被广泛地应用于融合多传感器系统中的量测信息。但是,通过深入的理论分析和实验仿真发现,自学习最小二乘加权数据融合算法在进行双传感器数据融合时具有较差的融合精度,同时该算法还具有较差的抗干扰性及稳定性。基于以上研究结果,提出了一种基于全局状态估计的多传感器加权数据融合算法,采用卡尔曼滤波的状态估计特性及相关历史信息,使得状态的估计值能够充分逼近真实值,从而使得算法具有较高的融合精度及抗干扰性。最后,Monte Carlo仿真结果显示,相比于已有算法,提出的算法在融合精度及抗干扰性方面具有明显地提高。 The principle of least squares based on self-learning weighted data fusion algorithm (PLS-SWFA) has been widely used to fuse measured data in multi-sensor systems.However,via extensive analysis and evaluation,we find that PLS-SWFA has low data fusion accuracy in two-sensors systems and also has low anti-jamming ability.To address this problem,our paper proposes a multi-sensor weighted data fusion algorithm (GSE-MWFA) based on global state estimation.Based on the state estimation of kalman filter,GSE-MWFA can use the historical data to make the fused data fully approximate the real-data of target state.Through extensive theoretical analysis and experiments,our data show that GSE-MWFA achieves higher fusion accuracy and greater anti-jamming ability in comparison with the existing algorithms.
出处 《红外技术》 CSCD 北大核心 2014年第5期360-364,共5页 Infrared Technology
基金 中国空空导弹研究院科技创新基金 编号:201306S08
关键词 多传感器数据融合 方差估计 状态估计 卡尔曼滤波 multi-sensor data fusion variance estimation state estimation kalman filter
  • 相关文献

参考文献3

二级参考文献24

  • 1杨利平,王颖龙.多传感器数据融合技术在防空C^3I中的应用[J].现代防御技术,2008,36(2):91-95. 被引量:3
  • 2邢素霞,张俊举,常本康,钱芸生.非制冷红外热成像技术的发展与现状[J].红外与激光工程,2004,33(5):441-444. 被引量:89
  • 3孙红岩,毛士艺,林品兴.多传感器数据分层融合的性质[J].电子学报,1996,24(6):55-61. 被引量:29
  • 4张今瑜,王岚,张立勋.基于多传感器的实时步态检测研究[J].哈尔滨工程大学学报,2007,28(2):218-221. 被引量:16
  • 5王国宏,陆大绘.多传感器信息融合及应用[M].北京:电子工业出版社,2001.
  • 6Foxlin E M.Generalized architecture for simultaneous lacalization auto-calibration map-building[C]//The IEEE/RSJ 2002 Inremational Conference on Intelligent Robots and System,2002:527-533.
  • 7Broatch S A,Henley A J.An integtated navigation system namager using federated Kalman fihering[C]//Proceedings NACCON 1991, 1991,1:422-426.
  • 8Blair W D.Least-aquares approach to asynchronous data fusion[J]. SPIE, 1992,1697:130-141.
  • 9Luo R C,Lin M,Scherp P S.Dynamic multi-sensor data fusion system for interlligent robots[J].IEEE Journal of Robotics and Automation, 1998,4 (4) : 104-106.
  • 10Rhee M,Seon H.Seunghwan,optimum window size for time series predietion[C]//Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1997,4:1421-1424.

共引文献77

同被引文献107

引证文献9

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部