期刊文献+

亮度特征自相关和GMM相结合的目标检测 被引量:6

Object Detection Combining Brightness Feature Autocorrelation and Gaussian Mixture Models
在线阅读 下载PDF
导出
摘要 基于混合高斯模型(GMM)的背景建模算法被广泛运用于运动目标检测,但在一些发生快速光照变化的视频序列中,不能正确地检测出运动目标。此外在对GMM参数进行初始化时,若初始化图像中存在运动目标,则目标检测的结果会出现初始化图像中的运动目标,从而导致误检测。针对上述问题,提出一种基于亮度特征自相关的GMM算法,该算法根据亮度特征自相关参数判断初始化图像中是否存在运动目标,利用亮度特征自相关参数的拟合值判断当前帧是否发生快速光照变化,运用GMM和亮度差值相结合进行目标检测。对实际摄取的视频进行仿真实验,结果证明,该算法在GMM初始化图像存在运动目标的干扰条件下,能够较好地从发生快速光照变化的视频序列中提取出运动目标,满足准确性和实时性的要求。 The background modeling algorithm based on Gaussian Mixture Models(GMM) is used widely in moving objects detection, but it can not accurately detect moving objects in some video sequences that have rapid changes of light. Moreover, in the initialization of GMM parameters, the result of object detection contains the moving objects of the initialization image and leads to error detection if the initialization image has moving objects. In allusion to the problems mentioned above, a GMM algorithm based on the intensity feature autocorrelation is proposed. The brightness feature autocorrelation parameters are used to identify whether there is a moving object in the initialization image, the fit value of intensity feature autocorrelation parameters is used to identify that there is a fast illumination variation or not in the current frame, and the object detection is made by using the ideas of GMM and intensity difference. The video taken actually is simulated by using the proposed algorithm that is of high accuracy and of high real-time, and results show that a moving object is extracted well from video sequences that have rapid changes of light under the disturbed condition that the initialization image of GMM has moving objects.
作者 王思明 赵伟
出处 《计算机工程》 CAS CSCD 2014年第5期219-223,共5页 Computer Engineering
关键词 背景建模 混合高斯模型 自相关 亮度特征 像素匹配 background modeling Gaussian Mixture Models(GMM) autocorrelation brightness feature pixel matching
  • 相关文献

参考文献3

二级参考文献24

  • 1PAPENBERG N,BRUHN A,BROX T,et al.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision,2006,67(2):141-158.
  • 2MADDALENA L,PETROSINO A.A self-organizing approach to background subtraction for visual surveillance applications[J].IEEE Trans on Image Processing,2008,17(7):1168-1177.
  • 3STAUFFER C,GRIMASON W E L.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society,1999:246-252.
  • 4KAEW TRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]//Proc of the 2nd European Workshop on Advanced Video Based Surveillance Systems.2001:149-158.
  • 5KAILATH T.The divergence and Bhattacharyya distance measures in signal selection[J].IEEE Trans on Communication Technology,1967,15(1):52-60.
  • 6TSAI D M,LAI S C.Independent component analysis-based background subtraction for indoor surveillance[J].IEEE Trans on Image Processing,2009,18(1):158-167.
  • 7AVIDAN S.Ensemble tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(2):261-271.
  • 8WANG Yang.Real-time moving vehicle detection with cast shadow removal in video based on conditional random field[J].IEEE Trans on Circuits and Systems for Video Technology,2009,19(3):437-441.
  • 9STAUFFER C,GRIMSON W E L.Learning patterns of activity using real-time tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 10ZHANG J,CHEN C H.Moving objects detection and segmentation in dynamic video backgrounds[C] //Proc of IEEE Conference on Technologies for Homeland Security.2007:64-69.

共引文献104

同被引文献63

  • 1崔智高,李艾华,冯国彦.采用多组单应约束和马尔可夫随机场的运动目标检测算法[J].计算机辅助设计与图形学学报,2015,27(4):621-632. 被引量:6
  • 2马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39
  • 3Sarker M H,Sloane A. TGSF/TLoG Filter with Optical Flow Technique for Large Motion Detection [ J ] International Journal of Machine Graphics & Vision, 2007,16 ( 3 ) :207-219.
  • 4Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking [ C]//Proc- eedings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. Washington D. C. , USA :IEEE Press ,1999:246-252.
  • 5Haines T S F, Xiang Tao. Background Subtraction with Dirichlet Processes [ C ]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer ,2012:99-113.
  • 6Greggio N,Bernardino A, Laschi C, et al. Self-adaptive Gaussian Mixture Models for Real-time Video Segment- ation and Background Subtraction[ C ]//Proceedings of the 10th International Conference on Intelligent Systems Design and Applications. Washington D. C. , USA: IEEE Press, 2010:983-989.
  • 7Chen Zezhi, Ellis T. Self-adaptive Gaussian Mixture Model for Urban Traffic Monitoring System [ C ]//Proceedings of International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press ,2011 1769-1776.
  • 8Xiong Weihua, Xiang Lei, Li Junfeng, et al. Moving Object Detection Algorithm Based on Background Sub- traction and Frame Differencing [ C ]//Proceedings of the 30th Chinese Control Conference. Washington D. C. , USA:IEEE Press ,2011:3273-3276.
  • 9Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction [ C]//Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C. ,USA :IEEE Press ,2004 : 1051-1054.
  • 10Lee D S. Effective Gaussian Mixture Learning for Video Background Subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (5) : 827 -832.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部