期刊文献+

I_ε类半无限规划的最优性条件 被引量:2

On Optimality Conditions for Semi-Infinite Programming With Type-I_ε Convexity
在线阅读 下载PDF
导出
摘要 主要研究了一类非光滑半无限规划问题,基于对称梯度,首次引入了Is类凸、拟Is类凸、伪Is类等新广义凸性概念,研究涉及这类函数的一类半无限规划的最优性,得到一些最优性的充分条件. The purpose of this paper is to consider a class of nonsmooth semi-infinite programming prob-lem.Based on the concept of symmetric gradient,a new class of generalized convexity,named type Is con-vexity,pseudo type Is convexity and quasi type Is convexity has been defined.For such programming problem,several sufficient optimality conditions have been established and proved by utilizing the above functions.The results show not only extension of some of the present researches,but also the application of the questions occurring in resource allocation,stock cutting problem in paper industry,agricultural planning and portfolio selection etc.
作者 杨勇
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期45-48,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 陕西省教育厅自然科学基金资助项目(11JK0488) 陕西科技大学自然科学基金资助项目(2012SB013)
关键词 IS 类凸 拟Is 类凸 伪Is 类凸 最优性 半无限规划 type Is convexity pseudo type Is convexity quasi type Is convexity optimality semi-infinite programming
  • 相关文献

参考文献6

  • 1HANSON M A.OnSufficiencyoftheKuhn-TuckerCondition[J].JMathAnalAppl,1981(80):545-550.
  • 2JEYAKUMARV MB.OnGeneralizedConvexMathematicalProgramming[J].JAustralMathSocSerB,1992,34(1):43-53.
  • 3KAULRN,SUNEJASK,etal.OptimalityCriteriaandDualityinMultipleObjectiveOptimizationInvolvingGeneralizedInvexity[J].JOptimTheoryAppl,1994(80):465-482.
  • 4MINCHRA.ApplicationofSymmetricDerivativesinMathematicalProgramming[J].MathProg,1971(1):307-320.
  • 5杨勇.B_ε-不变凸分式半无限规划的ε-最优性[J].西南大学学报(自然科学版),2009,31(9):58-60. 被引量:4
  • 6杨勇,连铁艳,穆瑞金.(F,b,α,ε)-G凸分式半无限规划问题的ε-最优性[J].西南师范大学学报(自然科学版),2008,33(6):1-4. 被引量:4

二级参考文献11

  • 1孙永忠,康开龙.非光滑广义F─凸规划问题的充分条件[J].工程数学学报,1996,13(1):117-121. 被引量:11
  • 2Loridan P. ε- Solutions in Vector Minimization Problems [J]. Journal of Optimization Theory and Applications, 1984, 43 (2) : 265 -- 276.
  • 3White D J. Epsilon Efficiency [J]. Journal of Optimization Theory and Applications, 1986, 49 (2) : 319 - 337.
  • 4Deng S. On Approximate Solutions in Convex Vector Optimization [J]. SIAM Journal on Control and Optimization, 1997, 35(6) : 2128 - 2136.
  • 5Dutta J, Vetrivel V. On Approximate Minima in Vector Optimization [J]. Numerical Functional Analysis and Optimization, 2001, 22 (7 - 8): 845 - 859.
  • 6Jeyakumar V, Mond B. On Generalized Convex Mathematical Programming [J]. J Austral Math. Soc ser B, 1992, 34 (1): 43--53.
  • 7Clarke F H. Optimalization and Nonsmooth Analysis [M]. New York: John Wiley, 1983.
  • 8Jeyakumar V, Mond B. On Generalized Convex Mathematical Programming [J]. J Austral Math Soc Ser B, 1992. 34(1): 43-53. 2007.
  • 9Hanson M A. On Sufficiency of the Kuhn-Tucker Condition [J]. J Math Anal Appl, 1981, 80:545-550.
  • 10SUN Qing-Ying, YE Liu-Qing. Necessary and Sufficient Conditions in Smooth Programming with Generalized convexity[J]. Chinese Quarterly Journal of Mathematical, 2000, 15(4) : 33 - 37.

共引文献6

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部