期刊文献+

基于EEMD能量熵及LS-SVM滚动轴承故障诊断 被引量:18

Fault Diagnosis Method of Rolling Bearings Based on Ensemble Empirical Mode Decomposition Energy Entropy and LS-SVM
在线阅读 下载PDF
导出
摘要 针对滚动轴承振动信号的非平稳特性和现实中难以获得大量典型故障样本的实际情况,提出基于集合经验模态分解(EEMD)能量熵和最小二乘支持向量机(LS-SVM)的滚动轴承故障诊断方法。首先通过EEMD分解将非平稳的原始振动信号分解成若干个平稳的固有模态函数(IMF);滚动轴承同一部位发生不同严重程度的故障时,在不同频带内的信号能量值会发生改变,因此可通过计算振动信号的EEMD能量熵判断发生故障的严重程度;从包含主要故障信息的IMF分量中提取的能量特征作为输入来建立支持向量机,判断滚动轴承的技术状态和故障严重程度,并选用不同核函数对诊断效果进行分析比较。实验结果表明,该方法能有效地应用于滚动轴承的故障诊断。 In view of the non-stationary features of vibration signals of rolling bearings and the difficulty to collect a large number of fault samples in practice, a fault diagnosis scheme based on ensemble empirical mode decomposition (EEMD) energy entropy and least square support vector machine (LS-SVM) is proposed. First of all, original acceleration vibration signals are decomposed into several intrinsic mode functions (IMFs). Since the energy of vibration signal changes in different frequency bands when fault occurs, the fault pattern and condition can be identified by calculating and analyzing the EEMD energy entropy. The energy features extracted from several IMFs, which contain the most dominant fault information, serve as the input vector of the support vector machine to judge the technical condition of the bearing and seriousness of the fault. The diagnosis results are analyzed and compared with different kernel functions. The experimental results show that the proposed method is effective.
出处 《噪声与振动控制》 CSCD 2014年第3期170-175,共6页 Noise and Vibration Control
基金 国家自然科学基金项目(基金编号:50975202)
关键词 振动与波 集合经验模态分解 固有模态函数 能量熵 最小二乘支持向量机 故障诊断 vibration and wave ensemble empirical mode decomposition intrinsic mode function energy entropy LS-SVM fault diagnosis
  • 相关文献

参考文献11

  • 1Lou X S, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mvchaaical S and Sial lroe,s/ag, 2004, 18(5): 1077-1095.
  • 2LI B, ZHANG P L, MI S S, et al. An adaptive morphological gradient lifting wavelet for detecting bearing defects[J]. MImaieatl Sysimm and Signal Procaing, 2012, 29(9): 415-427.
  • 3Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tnlaology Intammfional, 1999, 32: 469-480.
  • 4WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[C]. Proc R Soc Lond: A, 2004, 460: 1579-1611.
  • 5WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advanoos in AdapO.ve Data Analysis, 2009, 1 (1): 1-41.
  • 6夏均忠,苏涛,马宗坡,冷永刚,白云川.基于EMD的滚动轴承故障特征提取方法[J].噪声与振动控制,2013,33(2):123-127. 被引量:30
  • 7沈长青,谢伟达,朱忠奎,刘方,黄伟国,孔凡让.基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J].振动与冲击,2013,32(2):39-43. 被引量:38
  • 8YANG Y, YU D J, CHENG J S. A rolling fault diagnosis method based on EMD energy entropy and ANN[J]. loumal ofSotmd and Vibration, 2006, 294(1): 269-277.
  • 9蒋少华,桂卫华,阳春华,戴贤江.基于RS与LS-SVM多分类法的故障诊断方法及其应用[J].中南大学学报(自然科学版),2009,40(2):447-451. 被引量:10
  • 10Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Proesil Letters, 1999, 9(3): 293-300.

二级参考文献49

  • 1何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101. 被引量:46
  • 2胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130. 被引量:95
  • 3章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:75
  • 4唐朝晖,桂卫华,吴敏,杨帆,王海清.密闭鼓风炉铅锌熔炼的统计过程监测系统设计[J].计算机与应用化学,2007,24(2):155-158. 被引量:7
  • 5王文辉 周东华.基于遗传算法的一种粗糙集知识约简算法.系统仿真学报,2001,8(13):91-93.
  • 6Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[J]. Advances in Neural Information Processing Systems, 1996, 9(2): 281-287.
  • 7Chen S, Samingan A K, Hanzo L. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels[J]. IEEE Trans on Neural Networks, 2001, 12(3): 604-611.
  • 8Melgani F, Bruzzone L. Classification of hypcrspectral remote sensing images with support vector machines[J]. IEEE Trans on Geoscience Remote Sensing, 2004, 42(8): 1778-1790.
  • 9Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10Lukas L, Suykens J A K, Vandewalle J. Least squares support vector machines classifiers: A multi two-spiral benchmark problem[C]// Proceedings of the Indonesian Student Scientific Meeting. Manchester, 2001: 289-292.

共引文献75

同被引文献153

引证文献18

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部