期刊文献+

改进的FCM算法及其在脑电信号处理中的应用 被引量:3

An improved FCM algorithm and its application to EEG signal processing
在线阅读 下载PDF
导出
摘要 针对脑电信号的常用识别方法都基于监督型分类算法,需要一定数量的训练数据对分类器进行训练,无法满足实时应用的要求。提出基于数据点密度大小和马氏距离的改进模糊C-均值(FCM)非监督分类算法,对2003年第二届BCI大赛脑电信号分类。首先采用经验模式分解(EMD)算法对脑电信号进行分解,提取相应特征值,再经改进的FCM算法对输入的特征值进行分类。实验结果证明了改进算法在脑电信号分类应用中的可行性和有效性。 Most of the popular EEG classifiers need to be supervised and their parameters have to be trained by a number of train dala in advance. That 's the reason why they cannot be used in the real time circumstances. In this paper, a new FCM unsupervised classification algorithm is proposed which is based on the density size of data dot and mahalanobis distance. Then, the algorithm is used to classify the EEG signals from the database of the second session of 2003 BCI competition. The EMD algorithm is used to decompose the EEG and extract the characteristic values, and then these values are classified by the proposed FCM algorithm. The experimental results show the algorithm's feasibility and validity in the EEG classification field.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期83-89,共7页 Journal of Chongqing University
基金 四川省教育厅重点项目(2013SZA0153) 四川省应用基础研究计划项目(2013SZZZ026)
关键词 脑机接口 经验模式分解 模糊聚类 马氏距离 brain-computer interface (BCI) empirical mode decomposition (EMD) fuzzy clustering Mahalanobis distance
  • 相关文献

参考文献19

  • 1WolpawJ R, Birbaumer N, McFarland D J. Brain-computer interface for communication and control [J-. Clinical Neurophysiology, 2002,113 (6) :767-791.
  • 2徐宝国,宋爱国,王爱民.基于小波包能量的脑电信号特征提取方法[J].东南大学学报(自然科学版),2010,40(6):1203-1206. 被引量:12
  • 3王攀,沈继忠,施锦河.想象左右手运动的脑电特征提取[J].传感技术学报,2010,23(9):1220-1225. 被引量:16
  • 4Gandhi T, Panigrahi B K, Anand S. A comparative study of wavelet families for EEG signal classification [J]. Neurocomputing, 2011,74 (17) : 3051-3057.
  • 5Shenoy P,Krauledat M,Blankertz B R, et al. Towards adaptive classification for BCI[J]. Journal of Neural Engineering, 2006,3(1) :13-23.
  • 6应基光,王行愚.基于EMD的左右手运动想象脑电信号分析研究[J].生物医学工程学进展,2009,30(3):125-130. 被引量:5
  • 7Shimo N, Pang S N, Kasabov N, et al. Curiosity-driven multi-agent competitive and cooperative LDA learning [J]. International Journal of Innovative Computing, Information and Control, 2008,4 (7) : 1537 1552.
  • 8赵海滨,王宏.基于功率谱估计和神经网络的脑-机接口研究[J].系统仿真学报,2007,19(19):4581-4582. 被引量:11
  • 9Chen B H, Hu J L. An improved multi-label classification method based on SVM with delicate decision boundary[J]. International Journal of Innovation Computing, Information and Control, 2010,4 ( 6 ) : 1605-1614.
  • 10Hsu W Y, Lin C Y, Kuo W F, et al. Unsupervised fuzzy c-means clustering for motor image EEG recognition[J] International Journal of Innovation Computing, Information and Control, 2011,7 (8) : 4965 4975.

二级参考文献82

共引文献135

同被引文献30

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部