期刊文献+

基于自适应多小波与综合距离评估指数的旋转机械故障特征提取 被引量:6

Rotating machinery fault feature extraction based on adaptive multi-wavelets and synthesis distance evaluation index
在线阅读 下载PDF
导出
摘要 旋转机械设备故障诊断主要包括信号采集、特征提取和故障识别,而特征提取是进行故障诊断的基础和保证诊断结果正确的关键,为了提高特征参数对故障的敏感性,提出了基于自适应多小波与综合距离评估指数的旋转机械故障特征提取方法。该方法以综合距离评估指数最大值为目标函数,利用遗传算法从CL3自适应多小波库中选择最优多小波,并将该最优多小波用于转子振动信号的特征提取。通过对正常、不对中、不平衡、碰摩四种设备状态下采集的振动信号进行特征提取,并将所提出的方法和传统特征提取方法提取的特征参数输入到K-最邻近分类器进行分析,结果表明,所提出的方法能够大大增强特征参数对故障的敏感性,获得更高的故障诊断准确率。 The process of rotating machinery fault diagnosis is composed of signal acquisition,feature extraction and fault identification,among them the feature extraction is the foundation of fault diagnosis and the key to obtain correct diagnosis results.To improve the sensitivity of the extracted features to faults,a rotating machinery fault feature extraction method based on adaptive multi-wavelet and synthesis distance evaluation index was proposed here.In order to evaluate the sensitivity of feature parameters,the maximum value of the synthesis distance evaluation index was taken as the objective function,and the optimal multi-wavelets were selected from the library of CL3 adaptive multi-wavelet with genetic algorithm.Then they were used to extract features from vibration signals of a rotor.To prove the effectiveness of the proposed method,K-nearest neighbor classifier was used to analyze the features extracted with the proposed feature extraction method,the synthesis distance evaluation index feature extraction method and the principal component analysis feature extraction method,respectively from vibration signals of a tested rotating machinery under normal,unbalance,misalignment and rotor-to-stator rub conditions,respectively.The results showed that the proposed method can be used to improve the sensitivity of feature parameters and obtain a higher fault recognition rate.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第12期193-199,210,共8页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51179135 51379160) 中央高校基本科研业务费专项资金资助项目(201120802020004)
关键词 旋转机械 特征提取 故障诊断 CL3自适应多小波 综合距离评估指数 rotating machinery feature extraction fault diagnosis CL3 adaptive multi-wavelet synthesis distance evaluation index
  • 相关文献

参考文献20

  • 1Muszynska A.Rotordynamics[M].CRC Press-Taylor & Francis Group,Boca Raton,2005.
  • 2HalimE B,Choudhury M A A S,Shah S L,et al.Time domain averaging across all scales:a novel method for detection of gearbox faults[J].Mechanical Systems and Signal Processing,2008,22(2):261 278.
  • 3Choy F K,Mugler D H,Zhou J.Damage identification of a gear transmission using vibration signatures[J].Transactions of the ASME,2003,125 (2):394-403.
  • 4孙卫祥,陈进,吴立伟,伍星.基于PCA与决策树的转子故障诊断[J].振动与冲击,2007,26(3):72-74. 被引量:11
  • 5赵志宏,杨绍普,申永军.基于独立分量分析与相关系数的机械故障特征提取[J].振动与冲击,2013,32(6):67-72. 被引量:25
  • 6Kankar P K,Satish C,Sharma S P.Harsha.Rolling element bearing fault diagnosis using wavelet transform[J].Neurocomputing,2011,74 (10):1638-1645.
  • 7Khadem S E,Rezaee M,Development of vibration signature analysis using multiwavelet systems[J].Journal of Sound and Vibration,2003,261 (4):613-633.
  • 8毋文峰,陈小虎,苏勋家.基于经验模式分解的单通道机械信号盲分离[J].机械工程学报,2011,47(4):12-16. 被引量:54
  • 9Yuan J,He Z J,Zi Y Y,et al,Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis[J].Mechanical Systems and Signal Processing,2009,23(5):1490-1508.
  • 10Yuan J,He Z J,Zi Y Y.Gear fault detection using customized multiwavelet lifting schemes[J].Mechanical Systems and Signal Processing,2010,24(5):1509-1528.

二级参考文献47

共引文献96

同被引文献47

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部