期刊文献+

一种针对特定车辆潜在群体的行驶轨迹预测方法 被引量:7

Method of prediction on driving track of specific vehicles in potential group
在线阅读 下载PDF
导出
摘要 城市智能交通信息系统所产生的原始交通数据中存在有大量的可供城市道路安全管理使用的未知模式信息,为了有效利用这些数据,提出一种针对特定车辆潜在群体的行驶轨迹预测方法(SVPG-TP)。该方法主要利用所提出的特定车辆潜在群体搜索算法及序列模式发现与贝叶斯网络互补预测的方式,有效地解决了目前城市道路安全中最为关注的潜在群体发现以及行驶轨迹预测这两大问题。通过实验测试验证所提出的算法在城市道路安全管理中的有效性及实用性,并实现软件系统,为保障城市道路安全提供可靠的技术手段。 There are a lot of unknown patterns within the large amounts of raw traffic data generated by the urban intelligent traffic information system which can be used in urban road safety management. In order to effectively use these data,this paper proposed a method of prediction on driving track of specific vehicles in potential group(SVPG-TP). This method leveraged the proposed searching algorithm to potential group of specific vehicles and sequential pattern discovery and Bayesian networks complementary predictable pattern,effectively addressed the two big problems of the most concerned that both the potential group finding and driving track in the current urban road safety,in order to assure that the reliable technological means provided in urban road safety. Finally,the real system built for experimental test verifies the effectiveness and practicality of the proposed algorithm on potential group of specific vehicles traveling trajectory prediction in urban road safety management.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期1951-1955,共5页 Application Research of Computers
基金 中国科学院先导专项课题(XDA06040100)
关键词 序列模式发现 潜在群体 轨迹预测 贝叶斯网络 sequential pattern mining potential group trajectory prediction Bayesian networks
  • 相关文献

参考文献10

  • 1AGRAWAL R, RALOUTSOS C, SWAMI A. Efficient similarity search in sequence databases[ C 1//Proc of the 4th International Con- ference on Foundations of Data Organization and Algorithms. Berlin: Springer-Verlag, 1993:69- 84.
  • 2贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 3KEOGH E, RATANAMAHATANA C. Exact indexing of dynamic time warping[ J ]. Knowledge and Information Systems, 2005,7 ( 3 ) : 358-386.
  • 4王悦,唐常杰,杨宁,张悦,李红军,郑皎凌,朱军.在不确定数据集上挖掘优化的概率干预策略[J].软件学报,2011,22(2):285-297. 被引量:6
  • 5RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[ C]//Proc of the 18th ACM SIGKDD Intemational Confe- rence on Knowledge Discovery and Data Mining. New York: ACM Press,2012:262-270.
  • 6ESLING P, AGON C. Time-series data mining[ J]. ACM Computing Suweys (CSUR) ,2012,45( 1 ) :12.
  • 7SON N T, LE N H, ANH D T. Time series prediction using pattern matching[ C ]//Proc of International Conference on Computing Man- agement and Telecommunieations. 2013:401-406.
  • 8方艾芬,李先通,蔄世明,岳鹏飞.基于关联规则挖掘的伴随车辆发现算法[J].计算机应用与软件,2012,29(2):94-96. 被引量:10
  • 9赵金宝,邓卫,王建.基于贝叶斯网络的城市道路交通事故分析[J].东南大学学报(自然科学版),2011,41(6):1300-1306. 被引量:30
  • 10TAN Pang-ning. Introduction to data mining [ M ]. Boston: Addison Wesley,2007 : 349-415.

二级参考文献79

  • 1刘涵,刘丁,李琦.基于支持向量机的混沌时间序列非线性预测[J].系统工程理论与实践,2005,25(9):94-99. 被引量:46
  • 2段江娇,薛永生,林子雨,汪卫,施伯乐.一种新的基于隐Markov模型的分层时间序列聚类算法[J].计算机研究与发展,2006,43(1):61-67. 被引量:10
  • 3周晓云,孙志挥,张柏礼,杨宜东.高维类别属性数据流离群点快速检测算法[J].软件学报,2007,18(4):933-942. 被引量:21
  • 4Sany R Z, Francis P D N. Improving traffic safety: a new systems approach, 1830 [R]. Washington DC: Transportation Research Board of the National Acade- mies, 2003.
  • 5Luxhoj J T. Probabilistic causal analysis for system safety risk assessments in commercial air transport [ C ]//Workshop on Investigating and Reporting of Inci- dents and Accidents. Williamsburg, VA, USA,2003 : 17 -38.
  • 6Norrington L, Quigley J, Russell A, et al. Modeling the reliability of search and rescue operations with Bayesian belief networks[ J ]. Reliability Engineering and System Safety, 2008, 93 (7) : 940 - 949.
  • 7Kim M C, Seong P H. An analytic model for situation assessment of nuclear power plant operators based on Bayesian inference [J]. Reliability Engineering and System Safety, 2006, 91 ( 13 ) : 270 - 282.
  • 8Cafiso S, Cava G L, Montella A. Safety index for eval- uation of two-lane rural highways, 2019 [ R]. Wash- ington DC: Transportation Research Board of the Na- tional Academies, 2007.
  • 9Aguilera P A, Fernandez A, Fernaindez R, et al. Bayesian networks in environmental modeling [ EB/OL ]. (2011437- 02) [2011-09-01 ]. http://www, sciencedirect, com/sci- ence/article/pii/S1364815211001472.
  • 10Cooper G, Herskovits E. A Bayesian method for the in- duction of probabilistic network from data[J]. Machine Learning, 1992, 9(4) : 309-347.

共引文献119

同被引文献65

  • 1贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 2Barria J A, Thajehayapong S. Detection and classification of traffic anomalies uMng microscopic traffic variables [J]. IEEE Trans on Intelligent Transportation Systems, 2011, 12 (3) : 695-704.
  • 3Saruwatari K, Sakaue F, Sato J. Detection of abnormal driving using multiple view geometry in space-time [C] //Proe of the 4th IEEE Intelligent Vehicles Syrup. Piscataway, NJ.. IEEE, 2012:1102-1107.
  • 4Sang Haifeng, Wang Hui, Wu Danyang. Vehicle abnormal behavior detection system based on video [C] //Proc of the 5th IEEE Int Symp on Computational Intelligence and Design. Piscaraway, NJ: IEEE, 2012:132-135.
  • 5Srivastava S, Ka K N, Delp E J. Co-ordinate mapping and analysis of vehicle trajectory for anomaly detection [C] //Proc of the 12th IEEE Int Conf on Multimedia and Expo. Piscataway, NJ: IEEE, 2011:1-6.
  • 6Hao Jiuyue, Hao Sheng, Li Chao, et al. Vehicle behavior understanding based on movement string [C] //Proc of tile 12th IEEE Int Conf on Intelligent Transportation Systems. Piseataway, Nj: IEEE, 2009: 1-6.
  • 7Bouttefroy P, Beghdadi A, Bouzerdoum A, et al. Markov random fields for abnormal behavior detection on highways [C] //Proc of the 2nd European Workshop on Visual Information Processing. Piseataway, NJ: IEEE, 2010: 149- 154.
  • 8Ryan D, Denman S, Fookes C, et al. Textures of otical flow for real time anomaly delemion in crowds [C] //Proc of the 8th IEEE Int Conf on Advanced Video and Signal Blsed Surveillance. Piscataway, NJ: IEEE, 2011: 230-235.
  • 9Srivastava S, Delp E. Stmdoff vicleo analysis for the detection of security anomalies in vehicles [C] //Proc of the 39th IEEE Applied Imagery Pttern Recognition Workshop. Piscataway, NJ: IEEE, 2010:1-8.
  • 10Siyuan L, Yunhuai I., Ni I., et al. Detecting crowdedness spot in city transportation [J].IEEE Trans oi1 Vehicular Technology, 2013, 62(4): 1527-1539.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部