期刊文献+

基于HFLANN自组织多项式网络学习算法 被引量:3

THE SELF-ORGANIZING POLYNOMIAL NETWORK ALGORITHM BASED ON THE HYPERBOLOID FUNCTION LINK ARTIFICIAL NEURAL NETWORKS
在线阅读 下载PDF
导出
摘要 首先提出一种双曲函数型神经网络 HFL ANN,设计出一类基于 HFL ANN网络的层次双曲型函数网络HHFL ANN,给出了 HHFL AN N的网络学习算法 ,使其在用于非线性的拟合中体现了较强的优越性 ,对于任意的Volterra级数使用 HHFL ANN网络来逼近是完全可行的 ,该算法较 GMDH算法和 SOP算法 ,具有快速简单的特性 ,它优于 GMDH算法 ,有规律地选取部分多项式 ;优于 SOP算法 ,在构造 SOP网络不需要太多的中间隐层 ,从而加快了学习过程 ,提高了网络的逼近性能 。 In this paper, a new hyperboloid function link artificial neural network(HFLANN) is presented, and a kind of hierarchical HFLANN is designed, and a learning algorithm is presented. The algorithm shows stronger superiority on nonliner fitting, which can approximate a given Volterra series. The algorithm has better precision compared with GMDH algorithm and SOP algorithm. The main advantage of fitting is always based on hyperboloid function transformation. The algorithm is superior to the GMDH algorithm in randomly choosing partial ploynomials and the algorithm is superior to the SOP algorithm in that designing SOP networks needs not too many hidden layers, thus accelerating the learning process and improving the approximate quality of neural network. HHFLANN is very suitable for application domains with hierarchical structures.
作者 周永权 赵斌
出处 《计算机研究与发展》 EI CSCD 北大核心 2001年第5期587-590,共4页 Journal of Computer Research and Development
关键词 双曲函数网络 层次双典函数型神经网络 GMDH算法 自组织多项式网络 学习算法 hyperboloid function network, hierarchical HFLANN, Volterra series, GMDH algorithm
  • 相关文献

参考文献6

二级参考文献8

共引文献27

同被引文献53

  • 1刘伟,田树苞.改进型GMSM建模方法及其应用[J].自动化学报,1993,19(4):468-471. 被引量:3
  • 2徐田军,王桂增.GMDH中部分表达式的构成及改进方法[J].自动化学报,1994,20(4):470-475. 被引量:8
  • 3吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用[J].中国科学(E辑),1997,27(1):55-60. 被引量:26
  • 4Stork D G,A J D,et al.How to solve the N-bit parity problem with two hidden units.Neural Networks,1992,5:923-926.
  • 5Hornik K.Approxomation capabilities of multiplayer feed-forward networks.Neural Networks,1991,4:251-257.
  • 6IVAKHNENKO A G.Objective system analysis of macroeconomic systems[J].SAMS,1990,1:201-206.
  • 7IVAKHNENKO A G.Heristic self-organizing in problems of engineering cybernetics[J].Automatica,1967,6:207-219.
  • 8AKSENOVA T I,YURACHKOVSKY Y P.A characterization at unbiased structure and conditions of their J -optimality[J].Sov J of Automation and Information Sciences,1988,21:36-42.
  • 9MADALA H R,IVAKHNENKO A G.Inductive Learning Algorithms for Complex Systems Modeling[M].Boca Raton,London,Tokyo:CRC Press Inc,1994.
  • 10IVAKHNENKO A G,IVAKHNENKO G A.The review of problems solvable by algorithms of the group method of data handling (GMDH)[J].Pattern Recognition and Image Ayalysis,1995,5(4):527 -535.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部