期刊文献+

超声多普勒血流信号的非线性特征分析及应用 被引量:1

Nonlinear Characteristics Analysis of Doppler Ultrasound Blood Flow Signals and its Application
原文传递
导出
摘要 通过引入非线性研究方法 ,对超声多普勒血流信号的特征进行综合分析 .利用数学形态学方法提取声谱包络 ,并进行包络特征点的自动识别 .采用综合反映声谱包络形态特征的波形分类决策法和超声多普勒音频信号的分形特征表示法提取信号的新特征 ,其中波形分类决策法采用了非线性的人工神经网络分类器 .这些非线性特征的分析经临床应用 ,均取得了较为显著的效果 ,预期为胎儿宫内生长发育状况的判断和疾病的早期诊断提供更好。 In order to provide better and more sensitive indices for judgement of inter uterine fetal growth state and early disease diagnosis, nonlinear research methods were introduced to analyze the characteristics of Doppler ultrasound blood flow signal. The mathematical morphology method was used to extract the envelope of the spectrogram, and then to recognize automatically the character points of the graph. Two methods were proposed to obtain the new features of the signal. One is the spectrogram envelope classification and decision, in which the artificial neural network method was used. Another is the fractal analysis of Doppler ultrasound audio signals. The clinical application of these nonlinear characteristics analysis methods shows very good performance.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2001年第3期268-272,共5页 Journal of Fudan University:Natural Science
基金 教育部优秀年轻教师基金资助项目 上海市青年科技启明星计划资助项目 (97QD140 35 )
关键词 非线性 多普勒信号 数学形态学 分形 人工神经网络 血流 诊断 non linearity Doppler signal mathematical morphology fractal artificial neural network
  • 相关文献

参考文献4

二级参考文献3

共引文献8

同被引文献8

  • 1单华宁,王平立,王执铨,王珏.多普勒超声频谱图像信息提取方法研究[J].中国图象图形学报(A辑),2004,9(10):1245-1248. 被引量:4
  • 2Bazi Y, Bruzzone L, Melgani F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007,40(2) :619-634.
  • 3Arora S, Acharya J, Verma A, et al. Multilevel thresholding for image segmentation through a fast statistical recursive algorithm [J]. Pattern Recognition Letters,2008,29(2):119-125.
  • 4Ibanez L, Schroeder W, Ng L, et al. The ITK Software Guide , Second Edition [EB/OL]. http://www, irk. org/ItkSoftware Guide. pdf, 2005.
  • 5Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5) : 603-619.
  • 6Shapiro L G,Stockman G C.计算机视觉[M].北京:机械工业出版社,2005
  • 7PETROU M,BOSDOGIANNL P.数字图像处理疑难解析[M].赖剑煌,译.北京:机械工业出版社,2005:202-203.
  • 8王杰,王加银.Mean Shift算法的收敛性讨论[J].北京师范大学学报(自然科学版),2008,44(5):472-475. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部