摘要
设Ψ ( n)是 Dedekind函数 ,则有∑n≤ xnΨ ( n) =αx +E( x) ,其中α是常数 ,而 E( x)是误差项 .主要目的是利用经典的复积分理论及解析方法研究 E( x)的算术均值和积分均值 。
Let Ψ(n) be the Dedekind totient function.It is known that∑n≤xnΨ(n)=αx+E(x),where α is a constant, and E(x) is the related error term. The main purpose of this paper was using the classical complex integral theory and the analytic method to study the arithmetic and integral mean value of E(x), and gave a more precis asymptotic formula.
出处
《浙江师大学报(自然科学版)》
CAS
2001年第3期246-249,共4页
Journal of Zhejiang Normal University(Natoral Sciences)