期刊文献+

裂纹扩展的无网格数值模拟方法 被引量:18

Meshless method for numerical simulation of crack propagation
在线阅读 下载PDF
导出
摘要 疲劳断裂是航空材料的重要失效形式 ,由于裂纹尖端应力存在奇异性 ,传统有限元方法模拟裂纹沿任意路径扩展存在很多不足。作为一种新兴的数值模拟方法 ,无网格计算只需将求解问题离散为独立的节点 ,计算过程中可以实时跟踪裂纹尖端区域进行局布细化。将连续的裂纹扩展过程看作多个线性增量 ,每一个增量内裂纹扩展角根据应力强度因子确定 ,通过在裂纹尖端细化节点和引入外部基函数提高了计算精度。本文给出了应用无网格方法模拟裂纹扩展过程的关键技术和计算流程 ,通过对带有中心斜裂纹的 Ti-6 Al-4 V合金平板进行分析 ,预测得到的裂纹扩展路径与实验值吻合的较好。 Crack propagation is an important failure mechanism in aeronautical materials that requires accurate numerical model to capture stress singularity at the crack tip. As a promising numerical simulation method, meshless computation has some outstanding advantages over the traditional finite element method (FEM) in treatment of arbitrary evolving discontinuity. Because of the independence of elements, the adaptive refinement can be easily achieved, which makes the crack-propagation analysis dramatically simplified. By introducing enriched basis and nodal refinement, the computational accuracy was improved. The continuous crack propagation was modelled as a series of linear crack-growth increment. At each increment the crack-growth direction was determined based on the stress intensity factors. The key technique and the flowchart of the method were presented. The paper concludes with a sample calculation of oblique center-crack plate of Ti6Al-4V alloy under uniaxial tensile load. The predicted crack trajectory by meshless method is in good agreement with the experimental data.
出处 《航空材料学报》 EI CAS CSCD 2001年第3期51-56,共6页 Journal of Aeronautical Materials
基金 国家杰出青年科学基金 ( 5 982 5 1 1 7)
关键词 裂纹扩展 无网格计算 TI-6AL-4V合金 疲劳断裂 航空材料 数值模拟 Computational methods Finite element method Flowcharting Loads (forces) Stresses Titanium alloys
  • 相关文献

参考文献5

  • 1KARDESTUNCER H.有限元法手册[M].北京:科学出版社,1996.769-778.
  • 2Fleming M,Int J Numer Meth Engng,1997年,40卷,1483页
  • 3KARDESTUNCER H,有限元法手册,1996年,769页
  • 4中国航空研究院,应力强度因子手册,1993年
  • 5Rao A K,Int J Numer Method Eng,1971年,3卷,389页

同被引文献205

引证文献18

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部