期刊文献+

带裂纹扇形截面柱扭转时应力强度因子计算 被引量:1

Calculations of Stress Intensity Factor for Cracked Sector Bars in Torsion
在线阅读 下载PDF
导出
摘要 采用计算柔度法对带径向裂纹的扇形截面柱体的扭转问题进行了研究 在引入扭转共轭调和函数 ψ后 ,将裂纹柱体的扭转问题归结为Dirichlet问题 ,应用有限差分法和Gauss-Seidel迭代法求解 用Simpson积分公式计算抗扭刚度系数 最后通过能量释放率与柱体柔度随裂纹长度的变化率之间的关系得出应力强度因子 ,使问题得以解决 在文中计算了扇形截面的边裂纹的多个实例 本文使用的方法 ,理论推导简洁、计算方法简单、适用范围广 。 Torsion problems of the sector bars with cracks are solved numerically by the computing compliance method.The torsion problem can be reduced to a Dirichlet problem after quoting some analytic functions.And the finite difference approach can be used to solve this kind of boundary value problems.Then,torsional stiffness factor of the section can be evaluated by using the Simpson integral formula.Thus,the stress intensity factors are also obtaind from the relation between the energy release rate and the compliance.The computing compliance method in this paper is of simple theory and convenient computation.It can be used to solve the torsion problem of longitudinally cracked bar with any section.Some numerical results are obtained and plotted in figures,which can be directly used in practice.
出处 《江苏理工大学学报(自然科学版)》 2001年第6期81-83,98,共4页 Journal of Jiangsu University of Science and Technology(Natural Science)
基金 江苏省自然科学基金资助项目 (BK9910 9)
关键词 应力强度因子 柔度法 计算方法 裂纹 扇形截面柱 扭转 断裂力学 弹性力学 stress intensity factors compliance method computational methods
  • 相关文献

参考文献4

  • 1王钟羡.纵向均布剪力作用下带尖点孔口的应力强度因子[J].江苏理工大学学报(自然科学版),1995,16(2):79-85. 被引量:2
  • 2郭仲衡.扭转圆柱放射状内裂纹的应力强度因子[J].力学学报,1979,(3):98-98.
  • 3汤任基.裂纹柱的扭转理论[M].上海:上海交通大学出版社,1992..
  • 4Robert W Hornbeck 刘元久(译).数值方法[M].北京:中国铁道出版社,1982..

共引文献1

同被引文献8

  • 1汤任基,李玉兰,胡深洋.多角形柱体扭转的裂纹切割解法[J].中国科学(A辑),1994,24(11):1168-1176. 被引量:1
  • 2范秀昌,吴月明.一组适合于带纵向裂纹柱体圣维南扭转的等参数元素[J].应用数学和力学,1996,17(8):749-757. 被引量:2
  • 3Sih G C. Strength of stress singularities at crack tips for flexural and torsional problem [J]. Journal of Applied Mechanics,1963, 30(3): 419-425.
  • 4Sih G C. Stress distribution near internal crack tips for longitudinal shear problems [J]. Journal of Applied Mechanics, 1965,1(1): 51-52.
  • 5Tang Renji, Li Yulan. Torsion problems for a cylinder with a rectangular hole and a rectangular cylinder with a crack [J]. Acta Mechanica Solida Sinica, 1992, 8(2): 164-166.
  • 6蔡成文 刘明杰 黄春明.计算St Venant扭转时Km的任意高阶奇应变单元.固体力学学报,1983,1(3):92-99.
  • 7Chen Y Z. Numerical solution for multiple crack problems of torsion bar [J]. Computer Methods in Applied Mechanics and Engineering, 1999,174(1):203-209.
  • 8Chau K T, Wang Y B. A new boundary integral formulation for plane elastic bodies containing cracks and holes [J]. International Journal of Solids and Structures, 1999,36(14): 2041-2074.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部