期刊文献+

MX链的开链边界条件和稳定性 被引量:1

Boundary Conditions and Stability for Open Chains of the MX Compound
在线阅读 下载PDF
导出
摘要 在Baeriswyl Bishop模型的框架内 ,得到了有限长MX链开链的自洽变分基态 .端点固定边界条件下 ,选取适当的端点值 ,端点自由边界条件下 ,在原哈密顿基础上添加端点修正能 ,两种情形下基态解的几何结构和电子结构均与周期边界条件下的解相当 ,端点无塌缩 ,能隙中不出现缺陷能级 .这为研究MX链对电场的响应以及激子问题奠定了基础 .带隙吸收主峰无链长依赖性 . Self-consistent-variation ground states of a finite-length MX chain are obtained in the framework of Baeriswyl-Bishop model. Proper end values are chosed for fixed-end boundary condition,and suitable end-revision-term is added to the original Hamiltonian for free-end boundary condition. In the two cases, the numerical solutions, both geometrical and electronic structures, are similar to those in the Born-Karman condition respectively. There are not end collapses,and not defective levels in the gap. Thus it would be easily used to investigate the responses of MX chains to electric field and exciton problems. And it is also found that the gap absorption peak is independent of the length of MX chains.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第1期49-51,共3页 Journal of Sichuan Normal University(Natural Science)
  • 相关文献

参考文献1

二级参考文献1

  • 1Wu C,Phys Rev B,1990年,41卷,12845页

同被引文献18

  • 1Tasch S, Niko A, leising G, et al. Appl Phys Lett,1996,68:1090.
  • 2Onodera Y J. Phys Soc Jpn,1987,56:250.
  • 3Baeriswyl D, Bishop A R. J Phys C:Solid State Phys,1987,21:339.
  • 4Gammel J T, Saxena A, Batistic I, et al. Phys Rev,1992,45(B):6408.
  • 5Ichinose S. Solid State Commun,1984,50:137.
  • 6Nasu K J. Phys Soc Jpn,1983,52:3865.
  • 7Wada Y, Mitani T, Yamashita M, et al. Phys Soc Jpn,1985,54:3143.
  • 8Shuai Z, Bredas J L. Phys Rev,1995,52(B):13730.
  • 9Yu Z G, Fu R T, Wu C Q, et al. Phys Rev,1995,52(B):4849.
  • 10Fu R L, Guo G Y, Sun X. Phys Rev,2000,62(B),15735.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部