期刊文献+

适用于硬件高速计算的CNN目标跟踪算法 被引量:3

A Target Tracking Algorithm Based on CNN for High-speed Calculation of Hardware
在线阅读 下载PDF
导出
摘要 针对硬件上实现指定目标的高速跟踪,提出一种适用于硬件高速计算的深度卷积神经网络(convolutional neural network,CNN)目标跟踪算法.通过分析卷积层、卷积核、亚采样层和激活层对于网络性能的影响,针对硬件实现构建多种CNN结构.训练指定目标样本,得到基于卷积深度特征的目标模型,采用灵活的搜索策略,调用优化后的模型参数实现硬件上的目标跟踪.结合实例,对比了多种网络的性能和跟踪效果,其中最优模型参数仅为368Byte,测试错误率为0.0125,跟踪误差均值为0.779像素,证明了该算法在硬件上实现目标追踪的有效行和可行性. .To achieve the specified target tracking on the hardware.A target tracking algorithm based on convolution neural network for hardware is proposed.By analyzing the effects of the coiling layer,convolution kernel, subsampling layer,and activation layer on network performance,various CNN structures are constructed for hardware implementation.By training the target sample,the target model based on the convolution depth characteristics is obtained.The optimized model parameters are invoked to track the target tracking on the hardware,by using a flexible search strategy.The performance and tracking effect of a variety of networks are compared with an example.The parameter size of the optimal model is 368Byte,and the test error rate is 0.0125, and the mean of tracking error is 0.779.The effectiveness and feasibility of the algorithm to achieve target tracking on hardware is proved.
作者 季飞 王加庆 刘剑 吴南健 JI Fei;WANG Jia-qing;LIU Jian;WU Nan-jian(State Key Laboratory of Super Lattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 106083,China;University of Chinese Academy of Sciences,Beijing 10008a,China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第12期115-118,124,共5页 Microelectronics & Computer
基金 国家自然科学基金(61234003 61434004 61504141) 北京脑计划项目(z161100000216129) 中国科学院学科项目(kjzd-ew-111-04)
关键词 卷积神经网络 硬件计算 目标跟踪 convolutional neural network hardware calculation target tracking
  • 相关文献

参考文献1

共引文献4

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部