期刊文献+

物联网智能感知数字图像自适应增强方法仿真 被引量:4

Simulation of Intelligent Sensing Digital Image Adaptive Enhancement for Internet of Things
在线阅读 下载PDF
导出
摘要 研究一种数字图像自适应增强的有效方法,可以减小图像细节数据损失,提高图像的自适应对比度,增强图像品质,在实际生活中具有实用效果。针对当前物联网智能感知数字图像自适应增强方法增强图像时,存在图像增强效果不好导致增强后的图像品质低、清晰度不够的问题,提出了一种基于蛙跳算法的物联网智能感知数字图像自适应增强方法。通过建立噪声数字图像分解模型,依据图像去噪步骤减小图像噪声估计,对多分辨率数字图像去噪。运用蛙跳算法确定适应度函数值,将适应度函数作为输入,利用交叉熵对适应度函数进行阈值计算,当差异度较小时,选出优秀个体进行增强,输出数字图像自适应增强图像。仿真结果证明,所提方法能够增强对比度、增强图像细节信息量、增强图像灰度分布均匀,提升数字图像质量。 An effective method for adaptive enhancement of digital image can reduce the data loss of image detail. To improve the image contrast ratio and enhance image quality has practical effect.Therefore,an adaptive enhancement method for sensing digital image in the Interact of things based on frog leaping algorithm was put forward.By establishing the decomposition model of noise digital image and reducing image noise estimation,the noise in multi-resolution digital image was reduced.In addition,the fitness function value was determined by using frog leaping algorithm,and then the fitness function was used as the input.The cross-entropy was used to calculate the threshold of fitness function.When the difference degree was small,excellent individuals were selected for the enhancement. Finally,the adaptive enhanced image of digital image was outputted.According to simulation results,the proposed method can enhance the contrast,the detail information amount of image and the gray-scale distribution of image. Meanwhile,it can improve the digital image quality.
作者 罗小青 胡荣 洪胜华 熊婷 LUO Xiao-qing;HU Rong;HONG Sheng-hua;XIONG Ting(College of Science and Technology,Nanchang University,Nanchang Jiangxi.330029,China)
出处 《计算机仿真》 北大核心 2018年第12期271-275,共5页 Computer Simulation
基金 江西省教育厅科学技术研究重点项目(151496) 江西省科技厅项目(13E106)
关键词 数字图像 自适应增强 图像去噪 对比度 适应度函数 Digital image Adaptive enhancement Image denoising Contrast Fitness function
  • 相关文献

参考文献10

二级参考文献85

  • 1胡韦伟,汪荣贵,方帅,胡琼.基于双边滤波的Retinex图像增强算法[J].工程图学学报,2010,31(2):104-109. 被引量:55
  • 2储昭辉,汪荣贵,张璇,张新龙.基于Retinex理论JPEG2000压缩图像增强方法[J].光子学报,2012,41(2):200-204. 被引量:2
  • 3宋磊,罗其亮,罗毅,涂光瑜.电力系统实时数据通信加密方案[J].电力系统自动化,2004,28(14):76-81. 被引量:30
  • 4Land E H. McCann~ Lightness and retinex theory[J]. Jour- nal of the Optical Society of America, 1971,61(1):1- 11.
  • 5Jobson D J,Rahman Z,Ga W. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997,6(3) :451-462.
  • 6Jobson D, Rahmann Z, Woodell G. A multlscale retinex for bridging the gap between color images ~>: the human observa- tions of scenes[J]. IEEE Transanctions on Image Process- ing, 1997,14(6): 965-976.
  • 7Rahman Z U,Jobson D J, Woodell G A. Retinex processing for automatic image enhancement [J]. Journal of Electronic Imaging, 2004,13 (1) :100- 110.
  • 8Li Xiao-xia, Li Cheng guo, Zou Jian hua, et al. New low illu- mination color image enhancement algorithm[J]. Computer Application Research, 2011, 28 (9); 3554-3555. doi: 10. 3969/j. issn. 1001-3695. 2011.09. 100. (in Chinese).
  • 9Chen Fang-jin,Du Xiao jun,Ma Li,et al. Low-light image en- hancement based on retinex [J]. Television Technology, 2013,37 (15) : 4-6. doi: doi: 10. 3969 / j. issn. 1002-8692. 2013.15. 002. (in Chinese).
  • 10Kou Xing-yuan. The research of image enhancement algo- rithm based on retinex theory[D]. Shcnyang: Shenyang Aer ospace University, 2015.

共引文献171

同被引文献117

引证文献4

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部