期刊文献+

基于线性加速度的多节点人体行为识别

Multi-node human behavior recognition based on linear acceleration
原文传递
导出
摘要 针对当前基于加速度人体行为识别方法中存在的行为数据易受重力加速度影响以及空间信息欠缺等问题,提出一种基于线性加速度的多节点人体行为识别算法。通过分段双向去除重力加速度算法,去除传感器加速度中的重力加速度得到线性加速度;使用滑动均值滤波器滤除线性加速度与传感器加速度的颤抖运动,并对两种加速度中的冗余动作进行裁剪;分别从两种加速度中提取不同关节点数据间的动态时间规整算法(dynamic time warping,DTW)距离特征以及7种常规时域特征;利用支持向量机对人体行为进行分类。试验结果表明,该方法能有效提高人体行为识别的准确性。 Focused on the issue that the behavior data in the current acceleration-based human behavior recognition method was affected by the gravitational acceleration and the lack of spatial information,a multi-node human behavior recognition algorithm based on linear acceleration was proposed.The linear acceleration was obtained by removing gravitational acceleration using segmented bidirectionally removal of gravitational acceleration algorithm.The tremor motion signal was filtered by a sliding averaging filter for linear acceleration and sensor acceleration,and the redundant actions in the two accelerations were cropped.The dynamic time warping(DTW)distance features between different joint points and seven conventional time domain features were extracted from two accelerations.The support vector machine was employed to recognize the human behavior.Experimental results showed that this method could effectively improve the accuracy of human behavior recognition.
作者 李兴 侯振杰 梁久祯 常兴治 LI Xing;HOU Zhenjie;LIANG Jiuzhen;CHANG Xingzhi(College of Information Science and Engineering,Changzhou University,Changzhou 213164,Jiangsu,China;Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing,Changzhou College of Information Technology, Changzhou 213164,Jiangsu,China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2018年第6期56-66,共11页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金项目(61063021) 江苏省产学研前瞻性联合研究项目(BY2015027-12) 江苏省物联网移动互联技术工程重点实验室开放课题项目(JSWLW-2017-013)
关键词 多节点 线性加速度 DTW距离特征 支持向量机 multi-node linear acceleration DTW distance feature support vector machine
  • 相关文献

参考文献4

二级参考文献29

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2Khan A M,Lee Y K,Lee S Y,et al.A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer[J].IEEE Transactions on Information Technology in Biomedicine,2010,14(5):1166-1172.
  • 3Tang W,Sazonov E S.Highly accurate recognition of human postures and activities through classification with rejection[J].IEEE Journal of Biomedical and Health Informatics,2014,18(1):309-315.
  • 4Wang L,Gu T,Chen H,et al.Real-time activity recognition in wireless body sensor networks:from simple gestures to complex activities[C]∥Proc of16th IEEE International Conference on Embedded and Real-time Computing Systems and Applications.Macao:IEEE,2010:43-52.
  • 5Martín H,Bernardos A M,Tarrío P,et al.Enhancing activity recognition by fusing inertial and biometric information[C]∥Proc of the 14th International Conference on Information Fusion.Chicago:IEEE,2011:1-8.
  • 6Alzubi H S,Gerrard-Longworth S,Al-Nuaimy W,et al.Human activity classification using a single accelerometer[C]∥Proc of 14th UK Workshop on Computational Intelligence.Guildford:IEEE,2014:1-6.
  • 7Huang C,Chung C.A real-time model-based human motion tracking and analysis for human computer interface systems[J].Eurasip Journal on Applied Signal Processing,2004,2004(11):1648-1662.
  • 8Bourke A K,Lyons G M.A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor[J].Medical Engineering&Physics,2008,30(1):84-90.
  • 9Maarit K,Antti K,Ilkka W,et al.Determination of simple thresholds for accelerometry-based parameters for fall detection[C]∥Proc of 29th International Conference of the IEEE Engineering in Medicine&Biology Society.Lyon:IEEE,2007:1367-1370.
  • 10Bourke A K,O′brien J V,Lyons G M.Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm[J].Gait&Posture,2007,26(2):194-199.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部