期刊文献+

应用深度自编码网络和XGBoost的风电机组发电机故障诊断 被引量:64

Fault Diagnosis of Wind Turbine Generator Based on Deep Autoencoder Network and XGBoost
在线阅读 下载PDF
导出
摘要 针对风电机组现场故障样本难获取的问题,为实现风电机组发电机部件的故障诊断,通过分析风机监控与采集(SCADA)数据,设计了基于深度自编码(DAE)网络和XGBoost的故障诊断算法。该算法包含两部分:第一部分是DAE故障检测算法,通过DAE获取SCADA数据的重构值,分析重构误差的变化趋势与其超越阈值的情况以预测风机故障和提取故障样本;第二部分是XGBoost故障识别算法,用贝叶斯优化搜索XGBoost的最优超参数,建立XGBoost多分类故障识别模型。算例结果表明,DAE算法能够捕获风电机组发电机早期故障,XGBoost比其他算法更精确地识别不同故障类型。 Aiming at the problem that wind turbine field fault samples are difficult to obtain and to realize the fault diagnosis of generator components of wind turbine generators,through the analysis of supervisory control and data acquisition(SCADA)data,a fault diagnosis algorithm based on deep autoencoder(DAE)network and XGBoost is designed.The algorithm consists of two parts.The first part is the DAE fault detection algorithm,which obtains the reconstructed values of the SCADA data through DAE and analyzes the trend of the reconstruction error and its situation beyond the threshold to predict a fault of wind turbine and to extract the fault samples.The second part is the XGBoost fault identification algorithm.By using Bayesian optimization to search the optimal hyper-parameters of XGBoost,an XGBoost multi-class fault identification model is established.The results of the example show that the DAE algorithm can capture the early fault of wind turbine generators,and XGBoost can identify different fault types more accurately than other algorithms.
作者 赵洪山 闫西慧 王桂兰 尹相龙 ZHAO Hongshan;YAN Xihui;WANG Guilan;YIN Xianglong(Hebei Key Laboratory of Distributed Energy Storage and Microgrid (North China Electric Power University),Baoding 071003,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2019年第1期81-86,共6页 Automation of Electric Power Systems
基金 国家科技支撑计划资助项目(2015BAA06B03)~~
关键词 风电场 风电机组 故障诊断 深度自编码 wind farm wind turbine fault diagnosis deep autoencoder
  • 相关文献

参考文献6

二级参考文献92

  • 1李辉,郑海起,唐力伟.应用Hilbert-Huang变换的齿轮磨损故障诊断研究[J].振动.测试与诊断,2005,25(3):200-204. 被引量:18
  • 2张小栋,朱均,丘大谋.旋转机械故障诊断中的主从混合神经网络模型研究[J].振动工程学报,1996,9(3):220-229. 被引量:1
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 5Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 7Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 8Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 9Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 10Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.

共引文献389

同被引文献796

引证文献64

二级引证文献718

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部