期刊文献+

基于改进LeNet-5的油井井号识别方法 被引量:6

Oil Well Number Identification Method Based on Improved LeNet-5
在线阅读 下载PDF
导出
摘要 针对目前油井井号识别效率低,识别方法效果差的问题,本文采用基于深度学习的卷积神经网络(ConvolutionalNeural Network,CNN)方法进行识别。针对传统卷积神经网络LeNet-5结构应用在井号识别中存在的不足,本文通过转换模型中卷积核大小、增加高效降维层、使用混合激活函数,三方面进行改进。经过实验,改进后的LeNet-5模型与传统网络结构相比,减少训练时间、提高准确率,在油井井号识别上具有明显的优势。 In this paper,the Convolutional Neural Network (CNN)method based on depth learning is used to identificate oil well numbers because of the low efficiency in oil well numbers recognition and the poor effectiveness of identification methods. In view of the shortcomings of the traditional convolution neural network LeNet-5 architecture in the recognition of well numbers,the three aspects are improved in this paper.They are transforming the convolution kernel size,increasing the efficient dimension reduction layer and using the mixed activation function.Through experiments,the training time of the improved LeNet-5 model is reduced and accuracy is improved compared with traditional network structure.It is obviously better than the traditional network structure in the identification of oil well numbers.
作者 刘建伯 娄洪亮 LIU Jian-bo;LOU Hong-liang(College of Electrical Engineering & Information,Northeast Petroleum University,Daqing 163318 China;Daqing Oilfield Construction Design and Research Institute Measuring Instrument Section,Daqing 163712 China)
出处 《自动化技术与应用》 2019年第1期75-80,共6页 Techniques of Automation and Applications
关键词 卷积神经网络 LeNet-5 油井井号识别 激活函数 convolutional neural network LeNet-5 Oil well number recognition activation function
  • 相关文献

参考文献9

二级参考文献80

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 2西川 三官.最适化[M].东京:岩波书店,1982..
  • 3王兆安 杨君 等.谱波抑制与无功功率补偿[M].北京:机械工业出版社,1999..
  • 4Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identi- fication[ J]. Transaction of the ASABE, 1993,36 ( 1 ) : 163-171.
  • 5Im C, Nishida H, Kunii T L. Recognizing plant species by leaf shapes-a case study of the Acer family [ C ]//Proceed- ings of 14th International Conference on Pattern Recogni- tion. Brisbane, IEEE. 1998,2 : 1171-1173.
  • 6Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input [ J]. Computers and Electronics in Agriculture, 2000,29(1-2) :59-72.
  • 7Soderkvist O J O. Computer Vision Classification of Leaves from Swedish Trees [ D ]. Linkoping: Linkoping Universi- ty, 2001.
  • 8Ling H, Jacobs D W. Shape classification using the inner- distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) :286-299.
  • 9Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07). 2007: 1-8.
  • 10Zhang Shah-wen, Lei Ying-ke, Dong Tian-bao, et al. La- bel propagation based supervised locality projection analy- sis for plant leaf classification [ J ]. Pattern Recognition, 2013,46 (7) : 1891-1897.

共引文献376

同被引文献57

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部