期刊文献+

一类非自治分数阶随机波动方程的随机吸引子 被引量:1

The Random Attractors for a Class of Nonautonomous Fractional Stochastic Wave Equations
原文传递
导出
摘要 本文考虑带加性噪声的非自治分数阶随机波动方程在无界区域R^n上的渐近行为.首先将随机偏微分方程转化为随机方程,其解产生一个随机动力系统,然后运用分解技术建立该系统的渐近紧性,最后证明随机吸引子的存在性. We consider the asymptotic behavior of non-autonomous stochastic fractional wave equations on an unbounded domain R^n. We firstly transform the equation into a random equation whose solutions generate a random one system. Then we establish the asymptotical compactness of the system by the splitting technique. Finally the existence of random attractors is proved.
作者 文慧霞 舒级 李林芳 Hui Xia WEN;Ji SHU;Lin Fang LI(College of Mathematics and Software Science,Sichuan Normal University, Chengdu 610066,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2019年第1期25-40,共16页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11371267 11571245) 四川省科技厅应用基础计划项目(2016JY0204)
关键词 非自治分数阶随机波动方程 随机动力系统 随机吸引子 分解技术 加性噪声 non-autonomous stochastic fractional wave equation random dynamical system random attractor the splitting technique additive noise
  • 相关文献

二级参考文献13

  • 1Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.
  • 2Guo B., Wang L., Some Methods of Nonlinear Boundary Value Problem(Chinese), Zhongshan University Publishing House, Guangzhou, 1989.
  • 3Guo B., Nonlinear Evolution Equations(Chinese), Shanghai Scientic and Technological Education Publishing House, Shanghai, 1995.
  • 4Guo X., Xu M., Some physical applications of fractional Schrodinger equation, J. Math. Phys., 2006, 47: 082104.
  • 5Laskin, N., Fractional quantum mechanics and L~vy integrals, Phys. Left. A, 2000, 268: 298-305.
  • 6Laskin, N., Fractional quantum mechanics, Phys. Rev. E, 2000, 63: 3135.
  • 7Laskin, N., Fractional Schrodinger equation, Phys. Rev. E, 2002, 66: 056108.
  • 8PATA V. Attractors for a damped wave equation on with linear memory [ J ]. Adv. Math. Sci. Appl, 2000, 23 (7) :633 -653.
  • 9WANG B. Asymptotic behavior of stochasticwave equa- tions with critical exponents on R3 [ J ], Transactions of The American Mathematical Society. 2011, 363 ( 7 ) : 3639 - 3663.
  • 10WANG B. Random attractors for wave equations on un- boundeddomains[J]. Discrete and Continuous Dynami- cal Systems, 2009, 4 ( 1 ) : 800 - 809.

共引文献12

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部