摘要
由于等参元不存在逆变换的显式 ,所以在有限元分析的列式中都回避等参元逆变换 .但是在工程分析中 ,尤其在涉及两个物理场的耦合分析中 ,往往会遇到等参逆变换的需求 .文章从两种常见的四节点平面等参元和八节点空间等参元入手 ,通过分析等参变换的解析性质 ,提出了一种等参有限元逆变换的新算法 ,该算法具有简便、高效和高精度的特点 。
There is no explicit formulation of inverse mapping about the isoparametric element, so inverse mapping is avoided in finite element analysis. In engineering analysis or coupled field analysis, it is often met about inverse mapping; and it is necessary to find an efficient numerical inverse mapping algorithm. Through analyzing the analytical character of inverse isoparametric mapping based on two usual isoparametric elements, four_nodal isoparametric elements and eight_nodal space isoparametric elements, an efficient inverse isoparametric mapping algorithm in FEM is presented.This algorithm is simple, efficient and accurate; and it is convenient to be use in actual projects.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2002年第2期62-65,共4页
Engineering Journal of Wuhan University
关键词
等参元
局部坐标
逆变换
解析性质
isoparametric elements
local coordinates
inverse mapping
analytical method