期刊文献+

用算子分裂法解Burgers方程 被引量:4

An Operator-splitting Algorithm for Solutions of Burger's Equations
原文传递
导出
摘要 本文给出了一种求解非线性对流扩散方程:Burgers方程的算子分裂法,用显式差分格式处理扩散算子,用特征线法处理纯对流算子。并分析了算法的稳定性条件。然后,对一、二维Burgers方程进行数值解,所得结果与分析解或已有数值解吻合,表明了算法的有效性。 An operator-splitting algorithm for nonlinear advective diffusion equations——Burger's equations is presented. Explicit difference scheme and the method of characteristics are adopted for treating diffusion and advective operators respectively. Conditions for stability of the algorithm are also analyzed. Satisfactory agreements between numerical results of two examples using the present numerical procedure and the corresponding analytical or numerical solutions obtained by previous investigators are achieved, which manifests the potential efficacy of the splitting algorithm applied to simulations of viscous fluid flow and other advective diffusion process.
出处 《武汉水利电力学院学报》 CSCD 1991年第2期193-201,共9页
关键词 对流 扩散 算子分裂法 稳定性 advection diffusion stability fractional step method
  • 相关文献

同被引文献26

  • 1冯绍航,徐德龙,李辉,陈延信,肖国先.篦冷机中气固两相换热过程的模拟研究[J].西安建筑科技大学学报(自然科学版),2007,39(2):224-229. 被引量:19
  • 2DOUGLAS J, RUSSELL T F.Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[ J. SIAM Journal on Numerical Analysis, 1982,19(5) : 871-885.
  • 3SYLVAIN B, FLORENT C, JEAN-MATE H. A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes [ J ]. Int J Them Science, 2000, 39 : 806-825.
  • 4CHRISTIE I, GRIFFITHS D F, MITCHELL A R, et al. Finite element methods for second order differential equations with significant first derivatives [j]. International Journal for Numerical Methods in Engineering, 1976,10:1389-1396.
  • 5BROOKS A N, HUNGHES T J. Streamline upwind/preov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations J ]. Computer Methods in Applied Mechanics andEngineering, 1932,32(I/2/3) : 199-259.
  • 6HUNGHES T J,FRANCA L P, HULBERT G M. A new finite element formulation for computational fluid dynamies V:the Galerkin least-squares method for advective-diffusive equations [J] . Computer Methods in Applied Mechanics and Engineering, 1989,73(2) : 173-189.
  • 7DONEA J. A Taylor-Galerkin method for convective transport problems[ J ]. International Journal for Numerical Methods in Engineering, 1984,20: 101-119.
  • 8MORTON K W. Generalised Galerkin methods for hyperbolic problems[J]. Computer Methods in Applied Mechanics and Engineering, 1985,52(1/2/3) : 847-871.
  • 9JIANG C B, KAWAHARA M, KASHIYMA K. A Taylor- Galerkin-based finite element method for turbulent flows [ J]. Flnid Dynamic Research, 1992,9: 165-178.
  • 10ZIENKINEWICZ O C, TAYLOR R L. The finite element method: fluid dynamics [ M ]. 5th edition. Oxford: Butterworth Heinemarm, 2000.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部