期刊文献+

回归型支持向量机的简化算法 被引量:27

A Simplification Algorithm to Support Vector Machines for Regression
在线阅读 下载PDF
导出
摘要 针对支持向量机应用于函数估计时支持向量过多所引起的计算复杂性,提出一种简化算法,可以大幅度地减少支持向量的数量,从而简化其应用.采用简化算法还可以将最小平方支持向量机算法和串行最小化算法结合起来,达到学习效率高且生成的支持向量少的效果. Aiming at the computational complexity resulted from the large amounts of support vectors when the support vector machines (SVMs) are used in function estimation, a simplification algorithm is presented to reduce the number of support vectors and simplify applications. By the adaptation of the simplification algorithm, the LS-SVM (least square support vector machine) algorithm can be combined with SMO (sequential minimal optimization) algorithm to achieve good results with high learning efficiency and a few number of support vectors.
出处 《软件学报》 EI CSCD 北大核心 2002年第6期1169-1172,共4页 Journal of Software
基金 国家铁道部科技研究开发项目(2000X030-A)~~
关键词 回归型支持向量机 简化算法 机器学习 计算复杂性 人工神经网络 support vector machine regression machine learning computational complexity algorithm
  • 相关文献

参考文献5

  • 1Cortes, C., Vapnik, V. Support vector networks. Machine Learning, 1995,20:273(297.
  • 2Burges, C.J.C. Simplified support vector decision rules. In: Saitta, L., ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1996. 71(77.
  • 3Sch?lkopf, B., Bartlett, P., Smola, A., et al. Support vector regression with automatic accuracy control. In: Niklasson, L., Bodén, M., Ziemke, T., eds. Proceedings of the ICANN'98, Perspectives in Neural Computing. Berlin: Springer-Verlag, 1998. 111(116.
  • 4Suykens, J.A.K., Lukas, L., Van Dooren, P., et al. Least squares support vector machine classifiers: a large scale algorithm. In: European Conference on Circuit Theory and Design, ECCTD'99. 1999. 839(842. http://www.kernel-machines.org/papers/ SuyDooMooVan99.ps.gz
  • 5Platt, J. Fast training of support vector machines using sequential minimal optimization. In: Sch?lkopf, B., Berges, C.J.C., Smola, A.J., eds. Advances inKernel Methods--Support Vector Learning. Cambridge, MA: MIT Press, 1999. 185(208.

同被引文献241

引证文献27

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部