期刊文献+

Delayed error verification in quantum key distribution 被引量:13

Delayed error verification in quantum key distribution
原文传递
导出
摘要 Quantum key distribution(QKD)provides an unconditional secure key generation method between two distant legitimate parties Alice and Bob based on the fundamental properties of quantum mechanics,in the presence of an eavesdropper Eve.Since key reconciliation cannot always assure that the reconciled keys between Alice and Bob are identical,error verification is an important step in QKD.In this paper,we propose a scheme of delayed error verification using extra keys gained by privacy amplification with an arbitrarily small failure probability.The proposed scheme simplifies the post-processing procedure in QKD,which can be applied in practical QKD systems. Quantum key distribution (QKD) provides an unconditional secure key generation method between two distant legitimate parties Alice and Bob based on the fundamental properties of quantum mechanics, in the presence of an eavesdropper Eve. Since key reconciliation cannot always assure that the reconciled keys between Alice and Bob are identical, error verification is an important step in QKD. In this paper, we propose a scheme of delayed error verification using extra keys gained by privacy amplification with an arbitrarily small failure probability. The proposed scheme simplifies the postprocessing procedure in QKD, which can be applied in practical QKD systems.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2014年第23期2825-2828,共4页
基金 supported by the National Basic Research Program of China (2011CBA00200 and 2011CB921200) the National Natural Science Foundation of China (61101137,61201239,61205118,and 11304397)
关键词 量子密钥分配 误差检定 延迟 量子密钥分发 无条件安全 生成方法 量子力学 误差校验 Error verification Key reconciliation Privacy amplification Quantum key distribution(QKD)
  • 相关文献

参考文献19

  • 1Bennett CH, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. Processings of IEEE interna- tional conference on computers, systems and signal processing, 1984 Dec 10-12, Bangalore, pp 175-179.
  • 2Stucki D, Walenta N, Vannel F et al (2009) New J Phys 11:075003.
  • 3Eraerds P, Walenta N, Lergre Met al (2010) New J Phys 12:063027.
  • 4Tanaka A, Fujiwara M, Yoshino K et al (2012) IEEE J Quantum Electron 48:542-550.
  • 5Liu D, Wang S, Yin ZQ et al (2013) Chin Sci Bull 58:3859-3862.
  • 6Chen SJ, Lu DK, You LX (2013) Chin Sci Bull 58:1145-1149.
  • 7Zhang LJ, Wang YG, Yin ZQ et al (2011) Chin Sci Bull 56:2305-2311.
  • 8Yan T, Yan FL (2011) Chin Sci Bull 56:24-28.
  • 9Su XL (2014) Chin Sci Bull 59:1083-1090.
  • 10Brassard G, Salvail L (1994) Adv Cryptol EUROCRYPT'93 LNCS 765:410-423.

同被引文献145

引证文献13

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部