期刊文献+

TEP故障诊断方法研究 被引量:1

RESEARCH ON TEP FAULT DIAGNOSIS METHOD
在线阅读 下载PDF
导出
摘要 针对TEP(Tennessee Eastman Process)的故障诊断问题,分别采用PCA主元分析法与粒计算属性约简算法对TEP的52个变量在15种故障情况下的实测数据分别进行处理。结果显示采用PCA主元分析方法可以将其中的14个对各种故障情况都无影响或影响微弱的变量排除,而采用基于粒计算的属性约简算法。对预处理后的数据进行属性约简,可以将条件属性约简至24个即排除28个条件属性,表明该方法对TEP故障诊断的有效性。 In light of TEP( Tennessee Eastman Process) fault diagnosis issue, we use the principal component analysis (PCA) and granular computing attribute reduction algorithm respectively to process the measured data of 52 variables in TEP under 15 kinds of fault conditions separately. Results show that by applying PCA, 14 variables among them can be excluded of which the various fault conditions have either no or slight influence on them, while using the granular computing-based attribute reduction algorithm to carry out attribute reduction on the data with pretreatment, it can reduce the conditional attributes to 24, i. e. , 28 conditional attributes are excluded. This demonstrates the effectiveness of the method on TEP fault diagnosis.
机构地区 太原理工大学
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期82-85,共4页 Computer Applications and Software
关键词 粒计算 主元分析 属性约简 TEP Granular computing Principal component analysis Attribute reduction TEP
  • 相关文献

参考文献7

二级参考文献88

共引文献293

同被引文献13

  • 1Venkatasubramanian V,Rengaswamy R,Kavuri S N,et al.A review of process fault detection and diagnosis Part III: process history basedmethods [J].Computers and Chemical Engineering,2003 ,27(3):327-346.
  • 2Qin S.Survey on data-driven industrial process monitoring and diagnosis[J].Annual Reviews in Control,2012 ,36(2):220-234.
  • 3Russell L H.Fault detection and diagnosis in industrial system [M].London:Springer Verlag Press,2003.
  • 4Jiang Q C.Fault detection and diagnosis in chemical processes using sensitive principal component analysis [J].Industrial & Engineering Chemistry Research,2013,52(4):1635-1644.
  • 5Shao J D,Rong G.Nonlinear process monitoring based on maximum varianceunfolding projections [J].Expert Systems with Applications,2009,36(8):11332-11340.
  • 6Zhang Muguang,Ge Zhiqiang, Song Zhihuan,et al.Global-Local Structure Analysis Model and Its Application for Fault Detection and Identification[J].Industrial & Engineering Chemistry Research,2011,50(11):6837-6848.
  • 7Wong W K,Zhao H T.Supervised optimal locality preserving projection[J].Pattern Recognition,2012,45(7): 186-197.
  • 8Bin Shams M A,Budman H M,Duever T A.Fault detection,identification and diagnosis using CUSUM based PCA[J].Chemical Engineering Science,2011,66(20):4488-4498.
  • 9An S J,Liu W Q,Venkatesh S.Face recognition using kernel ridge regression[C] CVPR 2007:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Minneapolis,June17-22,2007,Piscataway,N J:IEEE Press,USA c2007.
  • 10Hoerl A E,Kennard R W.Ridge regression:Biased estimation for nonorthogonal problems[J].Technometrics,1970,12(1):55-67.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部