期刊文献+

一种基于协作频度聚类的Web服务信任评估方法 被引量:3

A Web Service trust evaluation approach based on collaborative frequency clustering
在线阅读 下载PDF
导出
摘要 在Web服务协作环境中选择可信赖的Web服务是分布式软件需要解决的一个关键问题,为此,提出了一种基于协作频度聚类的Web服务信任评估方法.该方法借鉴社会学信任模型,通过Web服务节点间的协作频度对Web服务进行聚类,提出个体信任度、群体信任度和综合信任度的概念,给出了一个Web服务信任度评估模型.还设计了一种基于全局信任管理和本地信任管理的Web服务信任度评估框架.通过构建Web服务库,对评估模型进行了模拟实验,证明了所提出的Web服务信任评估方法的可行性和有效性. Choosing reliable Web Services is a key issue for distributed software in the Web Services collaborative environment.In order to handle this problem,this paper proposes a Web Service trust evaluation approach based on collaborative frequency clustering.The approach is based on the method of sociological trust model and clusters Web Services according to the collaborative frequency among the Web Service nodes.The concepts of single trust degree,group trust degree and comprehensive trust degree are proposed and a trust evaluation model for Web Service is given.An evaluation framework of Web Service trust based on global and local trust management is designed.By building Web Services depository,the evaluation model is used to simulate the Web Services.Experimental results show the Web Service evaluation method is feasible and valid.
出处 《浙江工业大学学报》 CAS 2014年第4期393-399,共7页 Journal of Zhejiang University of Technology
基金 浙江省钱江人才计划(D类)基金资助项目(QJD1302009) 浙江省自然科学基金资助项目(LQ12F02016) 浙江省科技计划重大专项项目(2009C11164)
关键词 服务计算 服务可信 聚类 可信评估 service computing Web Service trust clustering trust evaluation
  • 相关文献

参考文献9

二级参考文献130

共引文献212

同被引文献44

  • 1余建桥,张帆.基于数据场改进的PAM聚类算法[J].计算机科学,2005,32(1):165-167. 被引量:15
  • 2淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 3HAN J, KAMBER M. Data mining concepts and techniques [M]. San Francisco: Morgan Kaufmann,2001.
  • 4ZHANG W, YOSHIDA T, TANG X J, et al. Text clustering using frequent item sets[J]. Knowledge-based systems, 2011, 23(5) : 379-388.
  • 5HAN J, KAMBER M, PEI J. Data mining concepts and tech- niques[M]. 3th ed. San Francisco: Elsevier,2011.
  • 6IAMON N, BOONGOEN T, GARRETT S, et al. A link-based cluster ensemble approach for categorical data clustering[J]. IEEE knowledge and data engineering,2012,24(3):413-425.
  • 7JI Z X, SUN Q S, XIA D S. A modified possibilistic fuzzy e- means clustering algorithm for bias field estimation and seg- mentation of brain MR image[J]. Computerized medical ima- ging and graphics,2011,35(5) :383-397.
  • 8BERGET I, MEVIK H B, NAES T. New modifications and applications of fuzzy C-means methodology[J]. Computation- al statistics & data analysis,2008,52(5) : 2403-2418.
  • 9ESTER M, KRIEGEL P H, SANDER J, et al. A density- based algorithm for discovering clusters in large spatial data- bases with noise[C]// Proceedings of the National Confer- ences on Aritificial Intelligence. Stockholm: Stockholm Uni- versity, 1998: 226-231.
  • 10DAVE R N, BHASWAN K. Adaptive fuzzy c-shells cluste- ring and detection of ellipses[J]. IEEE transactions on neural network, 1992,3(5) :643-662.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部