期刊文献+

Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments 被引量:7

Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments
原文传递
导出
摘要 Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios. Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第7期695-708,共14页 植物学报(英文版)
基金 supported by research grants 073-0731674-1673,073-0731674-0841 and 073‐0730463-0203 from Ministry of Science,Education and Sports,Republic of Croatia
关键词 Chlorophyll a fluorescence parameters field conditions intermated B73× Mo17 recombinant inbred lines JIP-TEST maize (Zeamays L.) quantitative trait loci Chlorophyll a fluorescence parameters field conditions intermated B73× Mo17 recombinant inbred lines JIP-test maize (Zeamays L.) quantitative trait loci
  • 相关文献

参考文献2

二级参考文献58

  • 1曹卫东,贾继增,金继运.不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究[J].植物营养与肥料学报,2004,10(5):473-478. 被引量:32
  • 2赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报,2005,16(7):1261-1264. 被引量:147
  • 3Yong-Jiang ZHANG,Chun-Jiang ZHAO,Liang-Yun LIU,Ji-Hua WANG,Ren-Chao WANG.Chlorophyll Fluorescence Detected Passively by Difference Reflectance Spectra of Wheat (Triticum aestivum L.) Leaf[J].Journal of Integrative Plant Biology,2005,47(10):1228-1235. 被引量:10
  • 4Aguilar I, Misztal I, Tsuruta S, Wiggans GR, Lawlor TJ (2011) Multiple trait genomic evaluation of conception rate in Holsteins. J. Dairy Sci. 94, 2621-2624.
  • 5Aparicio N, Villegas D, Casadesus J, Araus JL, Royo C (2000) Spectral reflectance indices for assessing durum wheat biomass, green area, and yield under Mediterranean conditions. Agron. J. 92, 83-91.
  • 6Araus JL, Casadesus J, Bort J (2001) Recent tools for the screening of physiological traits determining yield. Chapter 5. In: Reynolds M, Ortiz-Monasterio I, McNab A, eds. Application of Physiology in Wheat Breeding. CIMMYT, Mexico, D.F. pp: 59-77.
  • 7Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water stress in C3 cereals: What to breed for? Ann. Bet. 89, 925-940.
  • 8Araus JL, Bort J, Steduto P, Villegas D, Royo C. (2003) Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142, 129-141.
  • 9Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Grit. Rev. Plant Sci. 27, 1-36.
  • 10Babar MA, van Ginkel M, Klatt AR, Prasad B, Reynolds MP (2006) The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150, 155-172.

共引文献50

同被引文献54

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部