期刊文献+

一种基于近邻数判定的服务QoS协同过滤预测方法

A Web Service QoS Collaborative Filtering Prediction Method Based on Neighbor Numbers Decision
在线阅读 下载PDF
导出
摘要 在基于QoS的Web服务的选择中,用户需要对未使用过的服务的QoS进行预测。目前主要利用已有的用户服务QoS信息矩阵,预测缺失的QoS。但随着网络上Web服务数量的激增,用户-服务QoS信息矩阵的稀疏性问题成为影响预测效果的重要因素。针对传统方法的不足,提出一种基于近邻数判定的预测方法,通过比较待预测项的用户邻居数和服务邻居数,自动选择采用基于用户或者基于服务的协同过滤预测方法,实验表明,该方法能有效提高QoS预测结果的精度。 The QoS of Web services should be predicted before users select the services. The history QoS data of serv- ices are usually utilized for the prediction. With the increase of service numbers, the data sparsity influences the prediction quality badly. To slove the problem, this paper propose a neighbor numbers decision based method. Through comparing the numbers of user's neighbors and item's neighbors, our approach decides the users based or the item based collaborative filtering will be applied. Experimental result shows that the quality of prediction results is largely improved.
出处 《舰船电子工程》 2014年第9期38-41,共4页 Ship Electronic Engineering
基金 总装预研基金(编号:9140A27040413JB11407)资助
关键词 WEB服务 QoS预测 邻居数 协同过滤 Web service, QoS prediction, neighbor numbers, collaborative filtering
  • 相关文献

参考文献10

  • 1Kai Su, Liangli Ma, Xiaoming Guo, et al. An Efficient Parameter-adaptive Genetic algorithm for Service Selec- tion with End-to-end QoS Constraints[J]. Journal of Computational Information Systems, 2014, 10 (2) : 581- 588.
  • 2D. Ardagna, 13. Pernici. Adaptive Service Composition in Flexible Processes[J]. IEEE Transactions on soft- ware engineering, 2007,33(6) : 373-376.
  • 3M. Alrifai, T. Risse. Combining Global Optimization with Local Selection for Efficient QoSaware Service Composition[C]//Proc. of the 18th Int'l Conf. On World Wide Web, 2009 : 881-882.
  • 4Kai Su, Liangli Ma, Xiaoming Guo, et aL An Efficient Discrete Invasive Weed Optimization Algorithm for Web Services Selection[J]. Journal of Software, 2013,9 (4) ..451-458.
  • 5Minghui Wu, Xianghui Xiong, Jing Ying, et al. Qos- driven Global Optimization Approach for Large-scale Web Services Composition[J]. Journal of Computers, 2011,6(7) .. 1452-1456.
  • 6Zheng Z B, Ma H, tL Lyu M, et al. WSRec: A Col- laborative Filtering Based Web Service Recommender System[C]//IEEE International Conference on Web Services, 2009 : 437-444.
  • 7Shao L, Zhang J, Wei Y, et al. Personalize QoS Pre- diction for Web service via Collaborative Filtering[C]//IEEE International Conference on Web Services, 2007 .. 439-446.
  • 8罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 9张玉芳,代金龙,熊忠阳.分步填充缓解数据稀疏性的协同过滤算法[J].计算机应用研究,2013,30(9):2602-2605. 被引量:32
  • 10Zheng Z B , Zhang Y L, R. Lyu M. Distributed QoS Evaluation for Real-World Web Serviees[C]//IEEE International Conference on Web Services, 2010: 83- 90.

二级参考文献21

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 3Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 4Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 5Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 6Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 7Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 8Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 9Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.
  • 10Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53.

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部