期刊文献+

基于压缩感知信号重构的wifi室内定位算法研究 被引量:2

Research on WiFi indoor positioning system based on compressed sensing signal reconstruction
在线阅读 下载PDF
导出
摘要 针对位置指纹定位算法在训练阶段信号数据采集量大和定位精度不高的问题,提出一种压缩感知(CS,Compressed Sensing)与K均值改进支持向量机(SVM,Support Vector Machine)相结合的定位算法模型(CS-KSVM)。CS算法在训练阶段利用已采集到的部分参考点wifi信号强度数据对整个指纹信号库进行重构以降低信号采集工作量,再用K均值改进SVM算法来实现测试点的准确分类。实验仿真结果表明,CS-KSVM算法在相同采样点条件下的定位精度明显要高于传统定位算法,同时在相同定位精度条件下大大减少了定位需要的采样点数。CS-KSVM算法在3米之内的定位准确度可以达到93.2%。 In view of the problem that in the training phase location fingerprinting localization algorithm has large amount of signal data acquisition number and its positioning accuracy is not high, put forward a kind of local-ization algorithm model(CS-KSVM) based on compressed sensing (CS, Compressed Sensing) and the improved sup-port vector machine with K- means clustering (SVM, Support Vector Machine). The CS algorithm in training stage refactors the whole fingerprint library using the collected some reference point wifi signals strength data in order to reduce the workload of signal acquisition, and then uses k-means to improve the SVM algorithm for the sake of achieving accurate classification test point. The experimental simulation results show that the positioning accuracy of CS-KSVM algorithm is significantly higher than that of traditional localization algorithm under the condition of the same sampling point, at the same time the sampling points of positioning are greatly reduced under the condition of same positioning accuracy. The positioning accuracy of CS-KSVM algorithm within 3 meters can reach 93.2%.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第9期82-85,共4页 Laser Journal
关键词 位置指纹 压缩感知 支持向量机 室内定位 wifi Position fingerprint Compressed sensing Support vector machine WiFi Indoor positioning
  • 相关文献

参考文献14

  • 1卢恒惠,刘兴川,张超,林孝康.基于三角形与位置指纹识别算法的WiFi定位比较[J].移动通信,2010,34(10):72-76. 被引量:56
  • 2Vuckovic, M.; Petrovic, I.; Vidovic, D. etal. Space grid reso- lution impact on accuracy of the indoor localization finger- printing[C], Telecommunications Forum(TELFOR), 2011: 321-324.
  • 3秦泗明.基于位置指纹的WiFi室内定位技术研究[D].西安:电子科技大学,2010年.
  • 4夏英,王磊,刘兆宏.基于无线局域网接收信号强度分析的混合室内定位方法[J].重庆邮电大学学报(自然科学版),2012,24(2):217-221. 被引量:16
  • 5朱宇佳,邓中亮,刘文龙,徐连明,方灵.基于支持向量机多分类的室内定位系统[J].计算机科学,2012,39(4):32-35. 被引量:22
  • 6Yukai Yao, Yang Liu, Yongqing Yu,etal. K-SVM: An effec- tive SVM algorithm based on K-means clustering[J]. Jour- nal of computers,2013, 8(10):2632-2639.
  • 7David L. Donoho, Member. Compressed sensing[C]. IEEE, Transactions on Information Theory, April 2006.4(52): 1289-1306.
  • 8Arian Maleki, David L. Donoho. Optimally tuned iterative reconstruction algorithms for compressed sensing[J]. IEEE Journal of selected topics in signal processing,2010,4(2): 330-341.
  • 9Ryosuke Kubota, Shigeaki Tagashira, Yutaka Arakawa, etal. Efficient survey database construction usinglocation finger- printing interpolation[C]. 2013 IEEE 27th International Conference on Advanced Information Networking and Ap- plications.2013:469-476.
  • 10Bulut Altintas, Tacha Serif. Improving rss-based indoor posi- tioning algorithm via k-means clustering[J].European Wire- less, 2011,681-685.

二级参考文献63

共引文献1088

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部