期刊文献+

基于网格的量子博弈聚类算法 被引量:2

Clustering Algorithm Based on Quantum Game and Grid
在线阅读 下载PDF
导出
摘要 量子博弈是对经典博弈的量子模拟,利用量子的纠缠态,可以使博弈参与人在博弈策略的选择过程中相互影响,从而得到与经典博弈不同的结果。将量子博弈运用于聚类问题,并提出一种基于网格的量子博弈聚类算法。算法将数据点看作是博弈的参与人,通过在收益矩阵中内嵌距离函数,使相似的数据点能够获得更大的收益,从而形成聚类。此外,通过设定网格合并规则,使博弈过程得到了简化。仿真实验表明,算法在聚类质量上优于传统的K-means等算法。最后,就算法中的几个参数对算法性能的影响进行了讨论,并给出了参数选择的建议。 Quantum game is an analogy of classical game. Using each other implicitly, and the game will result in a different way. the quantum entanglement, game players interact with Quantum game was applied to clustering. A clustering algorithm based on quantum game and grid was proposed where data points are regarded as players. By embeding distance function into payoff matrix, similar data points can get more payoff, and clusters will be formed in that way. In addition, a rule about merging grid was designed to simplify the game. Simulations show the clustering quality of this algorithm is superior to K-means etc. At last, several parameters in this algorithm were discussed and some recommendations about parameters selection were provided.
出处 《计算机科学》 CSCD 北大核心 2014年第10期261-265,共5页 Computer Science
关键词 博弈论 量子博弈 网格 聚类 Game theory, Quantum game, Grid, Clustering
  • 相关文献

参考文献10

二级参考文献119

  • 1叶斌,胡修林,张蕴玉,陈海峰.基于3D Zernike矩的三维地形匹配算法及性能分析[J].宇航学报,2007,28(5):1241-1245. 被引量:9
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3[1]VON NEUMANN J,MORGENSTERN O.The theory of games and economic behavior[M].3rd ed.Princeton:Princeton University Press,1953.
  • 4[2]EISERT J,WILKENS M,LEWENSTEIN M.Quantum games and quantum strategies[J].Phys Rev Lett,1999,83:3077-3080.
  • 5[3]MEYER D.Quantum strategies[J].Phys Rev Lett,1999,82:1052-1055.
  • 6[4]PIOTROWSKI E W.Quantum market games[EB/OL].[2001-04-02].http://arxiv.org/abs/ quant-ph/0104006 v1.
  • 7[5]PIOTROWSKI E W,LADKOWSKI S.Quantum market games[J].Physica A,2002,312:208-216.
  • 8[6]PIOTROWSKI E W,LADKOWSKI S.Quantum english auctions[J].Physica A,2003,318:505-515.
  • 9[7]WAITE S.Quantum investing[M].London:Texere Publishing,2002.
  • 10[8]SLADKOWSKI J.Giffen paradoxes in quantum market games[J].Physica A,2003,324:234-240.

共引文献1114

同被引文献19

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部