期刊文献+

差分吸收激光雷达监测北京灰霾天臭氧时空分布特征 被引量:31

Temporal and Spatial Distribution Characteristics of Ozone Based on Differential Absorption Lidar in Beijing
原文传递
导出
摘要 差分吸收激光雷达是测量对流层臭氧时空分布的有力工具,利用差分吸收激光雷达在灰霾条件下开展观测研究,分析了臭氧浓度时空分布特征。结果表明:在夏季副热带高压大气天气条件下,受偏南风气团输送的影响,6月中旬形成一次高浓度的臭氧污染过程。6月14日夜间至6月15日中午离地面1.5~2km高度的臭氧气团浓度(即体积分数)高达1.2×10^-7以上,下午臭氧气团出现下沉,从而引起当日下午近地面臭氧浓度的升高。在灰霾天气过程中,细颗粒物与臭氧分布在不同高度上具有不同的关联特征,地面颗粒物充分参与了光化学反应过程,而高空高浓度的颗粒物和臭氧气体则与输送有关。晴朗天气下的臭氧浓度在整个空间尺度上都有不同程度的下降,并且没有出现明显的外部输入气团。 The differential absorption lidar is an effective tool for measuring ozone distributions.In the haze event,the differential absorption lidar is carried out to observe the temporal and spatial distribution characteristics of ozone concentration.The results show that a high ozone pollution process is caused by southwest airflow together with the influence of subtropical anticyclone in mid June.From the night of June 14 to midday of June 15,ozone concentration in high altitude reaches above 1.2×10^-7.And the ozone gas ranging from1.5 km to 2 km moves down to the surface,thus causing the increase of surface ozone concentration afternoon on June 15.In the haze period,the distributions of fine particulates and ozone show different characteristics in different heights.Specifically the nearground particles completely participate in the photochemical reaction process,while particles and ozone with are more related to transportation.In addition ozone concentration in clear weather is low and no obvious external input air mass is observed.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第10期241-248,共8页 Chinese Journal of Lasers
基金 国家重大科学仪器设备开发专项(2011YQ120024)
关键词 大气光学 差分吸收激光雷达 灰霾 臭氧浓度 副热带高压 atmospheric optics differential absorption lidar haze ozone concentration subtropical anticyclone
  • 相关文献

参考文献18

  • 1石玉珍,王庚辰,徐永福.北京市城近郊区光化学烟雾模拟研究[J].气候与环境研究,2008,13(1):84-92. 被引量:32
  • 2李杰,吴其重,高超,王喜全,王自发.东亚春季边界层臭氧的数值模拟研究[J].环境科学研究,2009,22(1):1-6. 被引量:13
  • 3G Ancellet, A Papayannis, J Pelon, et al.. DIAL tropospheric ozone measurement using a NdYAG laser and the Raman shifting technique[J].Atmospheric and Oceanic Technology, 1989, 6(5): 832-839.
  • 4Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, et al.. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J].Appl Opt, 2007, 46(12): 2269-2279.
  • 5A Papayannis, G Ancellet, J Pelon, et al.. Multi-wavelength lidar for ozone measurements in the troposphere and the lower stratosphere[J].Appl Opt, 1990, 29(4): 467-476.
  • 6Schotland R M. Some observations of the vertical profile of water vapor by a laser optical radar[C].4th Sysposium on Remote Sensing of Environment, 1966. 273-283.
  • 7Benot Lazzarotto, Max Frioud, Gilles Larcheveque, et al.. Ozone and water-vapor measurements by Raman lidar in the planetary layer: error source and field measurements[J].Appl Opt, 2001, 40(18): 2985-2997.
  • 8G Ancellet, Francois Ravetta. Compact airborne lidar for tropospheric ozone: description and field measurements[J].Appl Opt, 1998, 37(24): 5509-5521.
  • 9M Nakazato, T Nagai, T Sakai, et al.. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J].Appl Opt, 2007, 46(12): 2269-2279.
  • 10胡欢陵,王志恩,吴永华,周军.紫外差分吸收激光雷达测量平流层臭氧[J].大气科学,1998,22(5):701-708. 被引量:27

二级参考文献84

共引文献153

同被引文献286

引证文献31

二级引证文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部