期刊文献+

基于威布尔分布及最小二乘支持向量机的滚动轴承退化趋势预测 被引量:28

Degradation trend prediction of rolling bearings based on Weibull distribution and least squares support vector machine
在线阅读 下载PDF
导出
摘要 为有效描述滚动轴承的退化趋势,提出结合威布尔分布及最小二乘支持向量机的滚动轴承退化趋势预测新方法。用威布尔分布形状参数作为滚动轴承的性能退化指标,将该指标作为最小二乘支持向量机的输入构造退化趋势预测模型。鉴于最小二乘支持向量机模型参数对模型的推广预测能力影响较大,选粒子群算法(PSO)优化最小二乘支持向量机模型参数,并用实测滚动轴承全寿命实验数据进行检验。结果表明该方法能获得准确的预测结果。 A new prediction method was proposed based on Weibull distribution and least squares support vector machine to analyse the degradation trend of rolling bearings.The shape parameters of Weibull distribution were used as bearing recession performance indicators.The indicators act as the input of the least squares support vector machine and on this basis,a prediction model was constructed.In the light of the important influence of model parameters of least squares support vector machine on the predictive ability of the model,in the proposed method,particle swarm (PSO) algorithm was adopted to optimize the model parameters.The rolling bearing run-to-failure tests were carried out to inspect the prediction model,and the results demonstrate the effectiveness and accurateness of the proposed method.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第20期52-56,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(51275546) 高等学校博士学科点专项科研基金(20130191130001)
关键词 退化趋势预测 威布尔分布 性能退化评估 最小二乘支持向量机 degradation trend prediction Weibull distribution degradation assessment
  • 相关文献

参考文献15

  • 1申中杰,陈雪峰,何正嘉,孙闯,张小丽,刘治汶.基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J].机械工程学报,2013,49(2):183-189. 被引量:139
  • 2Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach[ J]. Industrial Electronics, IEEE Transactions on, 2004, 51(3): 694-700.
  • 3Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks [ J ]. Proceedings of the Institution of Mechanical Engineers, Part I : Journal of Systems and ControlEngineering, 2000, 214 ( 3 ) : 217 - 230.
  • 4Janjarasjitt S, Ocak H, Loparo K A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal[ J ]. Journal of Sound and Vibration, 2008,317(1/2) : 112 - 126.
  • 5奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:57
  • 6刘宝英,杨仁刚.基于主成分分析的最小二乘支持向量机短期负荷预测模型[J].电力自动化设备,2008,28(11):13-17. 被引量:47
  • 7Liao H, Zhao W, Guo H. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model [ C ]. Reliability and Maintainability Symposium, 2006 : 127 - 132.
  • 8JimSnez G A, Munoz A O, Duarte-Mermoud M A. Fault detection in induction motors using Hilbert and wavelet transforms [ J ]. Electrical Engineering, 2007, 89 (3) : 205 - 220.
  • 9Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine [J ]. Mechanical Systems and Signal Processing, 2007, 21 ( 7 ) : 2933 - 2945.
  • 10Yan J, Guo C, Wang X. A dynamic multi-scale Markov model based methodology for remaining life prediction [ J ]. Mechanical Systems and Signal Processing, 2011, 25 ( 4 ) : 1364 - 1376.

二级参考文献54

共引文献254

同被引文献263

引证文献28

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部