期刊文献+

一种协同的可能性模糊聚类算法 被引量:4

Collaborative PCM fuzzy clustering algorithm
在线阅读 下载PDF
导出
摘要 模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始中心非常敏感易导致一致性聚类。协同聚类算法利用不同特征子集之间的协同关系并与其他算法相结合,可提高原有的聚类性能。对此,在可能性C-均值聚类算法(PCM)基础上将其与协同聚类算法相结合,提出一种协同的可能性C-均值模糊聚类算法(C-FCM)。该算法在改进的PCM的基础上,提高了对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于PCM算法,说明该算法的有效性。 Fuzzy C-Means(FCM)algorithm is sensitive to noise and Possibilistic C-Means(PCM)algorithm is very sensi-tive to the initialization of cluster center and generates coincident clusters. With the collaborative relations among different feature subsets, the collaborative fuzzy clustering is combined with other clustering algorithms to make its clustering result better than that of the one with the original algorithm. An improved fuzzy clustering algorithm is proposed based on the combination of PCM and collaborative fuzzy clustering. The experimental results on the data sets show the effectiveness of the proposed method.
作者 谭欣 徐蔚鸿
出处 《计算机工程与应用》 CSCD 2014年第21期147-151,共5页 Computer Engineering and Applications
基金 国家教育部重点科研项目(No.208098) 湖南省科技计划项目(No.2012FJ3005)
关键词 可能性C-均值聚类(PCM) 模糊C均值(FCM) 协同模糊聚类 Possibilistic C-Means clustering(PCM) Fuzzy C-Means(FCM) collaborative fuzzy clustering
  • 相关文献

参考文献15

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1084
  • 2Kirindis S, Chatzis V.A robust fuzzy local information c-means clustering algorithm[J].IEEE Trans on Image Process,2010,19(5) : 1328-1337.
  • 3Cai W,Chen S,Zhang D.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J].Pattern Recognition, 2007,40 (3) : 825-838.
  • 4张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 5田军委,黄永宣,于亚琳.基于熵约束的快速FCM聚类多阈值图像分割算法[J].模式识别与人工智能,2008,21(2):221-226. 被引量:12
  • 6Bezdek J C.Pattern recognition with fuzzy objective func- tion algorithms[M].New York: Plenum, 1981.
  • 7Pal N R,Pal K,Bezdek J C.A new hybrid c-means clus- tering model[C]//Proc of the IEEE Int Conf on Fuzzy Systems.Piscataway : IEEE Press, 2004 : 179-184.
  • 8宋鱼庆.医学图像数据挖掘若干技术研究[D].南京:东南大学,2005.
  • 9Setnets M.Supervised fuzzy clustering for rule extrac- tion[J].IEEE Trans on Fuzzy Systems, 2000,8 ( 4 ) : 416-424.
  • 10Krishnapuram R, Keller J M.A possibilistic approach to clustering[J].IEEE Trans on Fuzzy Systems, 1993,1 (2) : 98-110.

二级参考文献64

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4Setnes M. Supervised Fuzzy Clustering for Rule Extraction. IEEE Trans on Fuzzy Systems, 2000, 8(4) : 416 -424.
  • 5Nascimento S, Mirkin B, Moura-Pires F. Modeling Proportional Membership in Fuzzy Clustering. IEEE Trans on Fuzzy Systems, 2003, 11(2): 173-186.
  • 6Pedrycz W. Collaborative Fuzzy Clustering. Pattern Recognition Letters, 2002, 23(14) : 1675 - 1686.
  • 7Gorinevsky D. An Approach to Parametric Nonlinear Least Square Optimization and Application to Task-Level Learning Control. IEEE Trans on Automatic Control, 1997, 42(7) : 912 -927.
  • 8Wasito l, Mirkin B. Nearest Neighbours in Least-Squares Data Imputation Algorithms with Different Missing Patterns. Computational Statistics & Data Analysis, 2006, 50(4) : 926 -949.
  • 9Nascimento S. Fuzzy Clustering via Proportional Membership Model. Amsterdam, Netherlands: I05 Press, 2005.
  • 10Bertsekas D P. Nonlinear Programming. 2nd Edition. Nashua, USA: Athena Scientific, 2000.

共引文献1290

同被引文献41

  • 1张伟,周霆,陈芸,邹汉斌.动态的模糊K-Modes初始化算法[J].计算机工程与设计,2006,27(4):682-683. 被引量:1
  • 2王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:46
  • 3吕宗磊,王建东.一种基于多维空间超球体的快速聚类算法[J].南京航空航天大学学报,2006,38(6):706-711. 被引量:7
  • 4Huang Zhexue,Ng M K.A Fuzzy K-Modes Algorithm for Clustering Categorical Data [J].IEEE Transactions on FuzzySystems, 1999,7(4):446-452.
  • 5G. Gan, J. Wu, Z. Yang. A genetic fuzzy k-Modes algorithm for clustering categorical data[J]. Expert Systems with Appli- cations 36 (2009) 1615-1620.
  • 6Izakian H,Pedrycz W,Jamal I.Clustering spatio-temporaldata:An augmented fuzzy C-means[J].IEEE Trans onFuzzy Syst,2013,21(5):855-868.
  • 7Lu C,Xiao S,Gu X.Improving fuzzy C-means clusteringalgorithm based on a density-induced distance measure[J].The Journal of Engineering,2014,1(1).
  • 8Ruspini E H.A new approach to clustering[J].Informationand Control,1969,15(1):22-32.
  • 9Bezdek J C.Pattern recognition with fuzzy objective functionalgorithms[M].New York:Plenum Press,1981.
  • 10Jafar O A,Sivakumar R.A study on possibilistic andfuzzy possibilistic C-means clustering algorithms fordata clustering[C].Proceedings of 2012 InternationalConference on Emerging Trends in Science,Engineeringand Technology(INCOSET),2012:90-95.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部